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ABSTRACT

Modern power systems have already evolved into complicated cyber physical systems (CPS),

often referred to as smart grids, due to the continuous expansion of the electrical infrastructure, the

augmentation of the number of heterogeneous system components and players, and the consequen-

tial application of a diversity of information and telecommunication technologies to facilitate the

Wide Area Monitoring, Protection and Control (WAMPAC) of the day-to-day power system oper-

ation. Because of the reliance on cyber technologies, WAMPAC, among other critical functions, is

prone to various malicious cyber attacks. Successful cyber attacks, especially those sabotage the

operation of Bulk Electric System (BES), can cause great financial losses and social panics. Appli-

cation of conventional IT security solutions is indispensable, but it often turns out to be insufficient

to mitigate sophisticated attacks that deploy zero-day vulnerabilities or social engineering tactics.

To further improve the resilience of the operation of smart grids when facing cyber attacks,

it is desirable to make the WAMPAC functions per se capable of detecting various anomalies

automatically, carrying out adaptive activity adjustments in time and thus staying unimpaired

even under attack. Most of the existing research efforts attempt to achieve this by adding novel

functional modules, such as model-based anomaly detectors, to the legacy centralized WAMPAC

functions. In contrast, this dissertation investigates the application of data-driven algorithms in

cyber attack detection and mitigation within a decentralized architecture aiming at improving the

situational awareness and self-adaptiveness of WAMPAC.

First part of the research focuses on the decentralization of System Integrity Protection Scheme

(SIPS) with Multi-Agent System (MAS), within which the data-driven anomaly detection and

optimal adaptive load shedding are further explored. An algorithm named as Support Vector

Machine embedded Layered Decision Tree (SVMLDT) is proposed for the anomaly detection, which

provides satisfactory detection accuracy as well as decision-making interpretability. The adaptive
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load shedding is carried out by every agent individually with dynamic programming. The load

shedding relies on the load profile propagation among peer agents and the attack adaptiveness

is accomplished by maintaining the historical mean of load shedding proportion. Load shedding

only takes place after the consensus pertaining to the anomaly detection is achieved among all

interconnected agents and it serves the purpose of mitigating certain cyber attacks. The attack

resilience of the decentralized SIPS is evaluated using IEEE 39 bus model. It is shown that, unlike

the traditional centralized SIPS, the proposed solution is able to carry out the remedial actions

under most Denial of Service (DoS) attacks.

The second part investigates the clustering based anomalous behavior detection and peer-

assisted mitigation for power system generation control. To reduce the dimensionality of the data,

three metrics are designed to interpret the behavior conformity of generator within the same bal-

ancing area. Semi-supervised K-means clustering and a density sensitive clustering algorithm based

on Hieararchical DBSCAN (HDBSCAN) are both applied in clustering in the 3D feature space.

Aiming to mitigate the cyber attacks targeting the generation control commands, a peer-assisted

strategy is proposed. When the control commands from control center is detected as anomalous,

i.e. either missing or the payload of which have been manipulated, the generating unit utilizes

the peer data to infer and estimate a new generation adjustment value as replacement. Linear

regression is utilized to obtain the relation of control values received by different generating units,

Moving Target Defense (MTD) is adopted during the peer selection and 1-dimensional clustering is

performed with the inferred control values, which are followed by the final control value estimation.

The mitigation strategy proposed requires that generating units can communicate with each other

in a peer-to-peer manner. Evaluation results suggest the efficacy of the proposed solution in coun-

teracting data availability and data integrity attacks targeting the generation controls. However,

the strategy stays effective only if less than half of the generating units are compromised and it is

not able to mitigate cyber attacks targeting the measurements involved in the generation control.
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CHAPTER 1. INTRODUCTION

As one of the largest and most complicated artificial critical infrastructures, power girds have

been undergoing rapid development and evolution worldwide since Thomas Edison and his company

constructed the first direct current power system in New York City in September 1882. Over

years, countless unprecedented challenges continually arise and the sophistication of power system

planning, operation and maintenance never stops increasing. In the meanwhile, great number of

assorted technical innovations have either been adopted by or directly emerged from the power

industry. As of now, the modern power systems have already evolved into what is referred to as

smart grids, with salient features such as the replacement of fossil energy resources with renewable

resources, the bi-directional flow of both the electricity and information and also grid monitoring

and control that is “closer” to real-time. Though the ultimate goal of power industry is to deliver the

electricity to the customers, reliable and economic power generation, transmission and consumption

heavily rely on heterogeneous information and communication technologies (ICT). Therefore, a

smart grid is often perceived as a Cyber Physical System (CPS), which comprises a physical layer

transmitting the electricity from power plants to load centers and a cyber layer that oversees and

manages the operation of the physical layer.

1.1 Smart Grid Overview

According to NIST (National Institute of Science and Technology) [1], a modern power system

is composed of the following domains: generation, transmission, distribution, customers, markets,

operations and service providers, etc. In general, the operation of every domain relies on various

interconnected primary equipment and secondary devices. Electric energy and data flow continually

among these domains as depicted in Figure 1.1. The energy grid is often referred to as primary

system or physical layer and the communication network and all end nodes connected to it is
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Figure 1.1 Smart grid domains [1]

referred to as secondary system or cyber layer. In this context, all the equipment directly involved

in the electricity generation, transmission and consumption process belong to the physical layer and

all the intelligent electronic devices (IED), networking devices, computers and servers equipped to

monitor, protect and control this end-to-end process constitute the cyber layer.

1.1.1 Physical Layer

The physical layer of a power system contains four aforementioned domains: generation, trans-

mission, distribution and consumption. The expansion and upgrade of the physical layer never

really stops since 1890’s due to the continuous increase in electricity demand. For the last two

decades, the physical layer of power systems has become more heterogeneous. Renewable energy

farms, Flexible AC Transmission System(FACTS) equipment, High Voltage Direct Current Trans-

mission (HVDC), micro-grids, electricity storage and electric vehicles, etc. have been gradually
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integrated. Accommodation of these new elements is inevitable and it also brings new challenges

for the operation of power systems.

1.1.1.1 Generation

Electricity generation is the process of converting none-electric energy to electricity, which is

clean and easy to transmit over long distance. Common resources utilized in generation include

hydro power, nuclear, natural gas, coal, wind, solar, geothermal energy, etc. and the energy

conversion is usually achieved via different types of turbines and generators.

Traditionally the electricity is generated by large generators at power plants close to the energy

sources in order to improve the generation efficiency. Great number of big power plants were built

up during 20th century worldwide. As of now, the Three Gorges Dam in China is the largest power

plant in the world, which has 34 hydro generating units in total with the maximal capacity as

225,000 MW. Nowadays, the generation of small scales also become attractive such as micro-grids

containing roof PV panels and wind turbines.

1.1.1.2 Transmission

Due to the dispersed distribution of energy resources, which are often far from the load center,

people have built High Voltage Alternate Current (HVAC) electricity transmission system to deliver

the electricity from power plants to customers over long distance. To reduce the energy loss during

transmission (i.e. to reduce the line current), electric voltage level needs to be boosted with

transformers before electricity gets sent out of power plants. In US, the commonly used AC high

voltage levels include 138kV, 230kV, 345kV, 500kV and 765kV. Recently, High Voltage Direct

Current (HVDC) transmission is becoming popular because of the progress achieved in power

electronic devices manufacturing. The major benefits that HVDC provides include more economic

solution of electricity delivery over very long distance compared to HVAC, connecting two AC

systems operating at different frequencies, better system stability control, etc. Conventionally,

electricity generation and high voltage transmission together is referred to as Bulk Electric System
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(BES) and its reliability is of the most importance for the daily operation of power systems since

severe disturbances take place in BPS can potentially result in catastrophic blackouts influencing

a multitude of customers across a vast region.

1.1.1.3 Distribution

When the electric energy has been sent to load centers, the electric voltage needs to be stepped

down in distribution substations. Common voltage levels at the distribution system vary from

4kV to 35kV, some industry customers can be directly connected to this voltage level and for

residential and other commercial users, the voltage needs to be further lowered to 120V/220V.

Besides, distribution systems allow the direct connection of renewable power plants such as wind

and solar farms.

1.1.1.4 Consumption

In the old days, the domain of consumption means nothing but passive loads for power indus-

try. But today, electricity consumers has become interactive with the utilities. For example, the

Distributed Energy Resource (DER) technology becomes mature so customers can choose to install

their own DER generation, which needs to be accommodated properly if they need to be connected

back to the distribution system. On the other hand, utilities find that demand response can be

adopted as an alternative to improve the reliability and security of system operation other than

solely putting more capital investment to strengthen the power grid.

1.1.2 Cyber Layer

Electricity is something that cannot be stored in large amount, and therefore, the balance of

generation and consumption needs to be attained in real time. Due to this and also the complexity

of the interconnection and interaction within the physical layer, almost every piece of equipment

of the physical layer has to be monitored, protected or controlled whenever it is energized. This is

where the cyber layer functions come into play.
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The cyber layer of a smart grid often comprises Information technology (IT) network and

Operation Technology (OT) network. In Figure 1.1, for instance, the market and service provider

are both part of the IT network while the “operations” is part of the OT network. In general, the

IT network hosts functions such as corporate web server, market functions, cloud functions etc.

that are not directly related to the operation of the power grid and it allows public access to a

certain extent. In contrast, the OT network functions are more critical in a sense that they directly

monitors and controls the day-to-day operation of the power system. IT, OT and public network are

typically isolated with firewalls and authentication mechanisms like VPN (virtual private network).

Like any others communication networks, the cyber layer of power system contains large number

of end nodes, routing devices and communication channels. End nodes in this layer include IEDs

(such as phasor measurement units, smart meters, relays), data pre-processing modules (like remote

terminal units, phasor data concentrators), decision making scheme modules, etc. End nodes have

to gather, report and exchange data/information with each other to achieve certain pre-designed

functions.

The geographic span of the communication in cyber layer is determined by the needs of various

functions. But in general, system wide communication is getting more and more popular so as

to facilitate the function realization and improve the speed of operations. The two most critical

wide area communication systems in smart grids are Supervisory Control and Data Acquisition

(SCADA) system and Wide Area Measurement System (WAMS).

1.1.2.1 SCADA

SCADA is widely used for industrial automation system’s monitoring and control. In power

system, each station has a Remote Terminal Unit (RTU) that gathers data from the local secondary

devices such as transducers, sensors and meters. SCADA collects data from RTUs located at

different stations and transmits them to the control center via wide area communication every a

few seconds. Applications including State Estimation (SE), Automatic Generation Control (AGC),

economic dispatch, contingency analysis, wide area protection and control schemes, etc. utilize
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those data to monitor the operation status of power system, decide the necessary controls to launch

and then send control commands back to RTUs and close the control loop. The communication

protocol commonly used in SCADA system by North American utilities is DNP3, and the version

that is widely used still lacks security features such as encryption or authentication.

1.1.2.2 WAMS

With the advent of Phasor Measurement Unit (PMU) and synchronized measurement technol-

ogy, Wide Area Monitoring System (WAMS) emerges as an alternative to SCADA, which collects

data at a much higher sampling rate and so that many applications can potentially be realized close

to real time [2]. The typical sample rate in WAMS is 30, 60 or 120 samples/second. With all PMUs

being synchronized to the same time source, GPS for instance, WAMS has the access not only to

the voltage or current magnitudes, it can also measure the relative phasor angles directly. WAMS

is often constructed in a hierarchical architecture, where Phasor Data Concentrators (PDC) at dif-

ferent levels will first concentrate the data from PMUs and then forward the processed data to the

control center. Nowadays, applications developed based on WAMS are mainly for monitoring, such

as transient instability detection and linear state estimation. Wide area protection and controls

based on WAMS data are also under development. More and more applications will be put into use

when the data accuracy of WAMS gets further improved. North American Synchrophasor Initiative

(NASPI) has showed a road map about the application of synchronized measurement technology

in 2006 [2]. IEEE C37.118 is often adopted as the communication protocol in WAMS.

1.1.2.3 Wide Area Monitoring, Protection and Control

A group of critical functions, referred to as Wide Area Monitoring, Protection and Control

(WAMPAC), exists in the cyber layer of smart grid, which help maintain the secure, reliable

and economic operation of the smart grid. WAMPAC functions collect wide area measurements

cyclically to attain a system-wide profile of the grid operation state, based on what coordinated and

economic controls can be determined and performed appropriately. Common WAMPAC functions
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Figure 1.2 WAMPAC in a closed control loop

include System Integrity Protection Schemes (SIPS, also known as remedial action schemes, system

protection schemes, etc.), functions encompassed by the Energy Management System (EMS) such

as State Estimation (SE), Automatic Generation Control (AGC), Optimal Power Flow (OPF), real

time contingency analysis, etc. and those rely on WAMS, which include phase angle monitoring

(PAM), power oscillation monitoring (POM), power damping monitoring (PDM), voltage stability

monitoring (VSM), and dynamic line rating, etc. [3]

Wide area monitoring is responsible for data collection from geographically dispersed stations

and it is capable of identifying disturbances and contingencies such as inter-area oscillation. Be-

yond operation monitoring, wide area protection and control checks the grid operating state against

predefined conditions and then determines the most appropriate remedial actions or control activ-

ities. The protection or control actions will be triggered so as to alleviate undesirable operation

conditions such as system oscillation and continuous frequency deviation, etc.

Figure 1.2 depicts the WAMPAC as a closed control loop. The three major actions included in

the operation of WAMPAC, i.e. measurement collection, decision making and command launch-

ing, heavily rely on ICT. High speed networks and modern communication protocols ensure that

the measurements and control signals get delivered in time to meet the operation requirements

of critical infrastructures. The SCADA and WAMS systems introduced previously both rely on

the telecommunication to interconnect substations and control center involved in the WAMPAC.
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Similarly, high speed processors and efficient data processing algorithms adopted in the EMS and

other standalone WAMPAC modules guarantee the wide area protection and control decisions can

be achieved accurately and efficiently. After data analysis, the required control commands will be

sent from control center to distributed substations for actuation through the same telecommunica-

tion networks. Every link in the closed-loop of WAMPAC needs to stay flawless to guarantee the

satisfactory efficacy of the entire function. Since WAMPAC directly interacts the operation of the

power grids, its malfunction can be catastrophic.

The wide deployment of ICT has greatly facilitated the management of the smart grids by

enabling the implementation of WAMPAC. However, the cyber layer risks also become a great

concern recently. Cyber security didn’t get as much attention as the reliability in most critical

infrastructure such as the power sector in the past. The main purpose of deploying ICT was to

speed up the data transmission so that the timing critical WAMPAC functions don’t get deteriorated

because of latency. Therefore, we can find that the protocols used for smart grid communication

often lack encryption or authentication mechanisms and many IEDs and station gateways are even

directly connected to the internet. Such breach of cyber security results in the exposure of critical

infrastructure to all types of cyber threats as shown by Figure.1.3. The cyber security of WAMPAC

in a smart grid will be elaborated in chapter II.

1.2 Research Objective and Contribution

Considering the reliance of the operation of smart grids on ICT and the importance of WAMPAC,

this dissertation selects wide area protection and wide area control functions as study objects and

investigates the cyber attack detection and mitigation through architecture and function redesign

so that the situational awareness, self-adaptivenes and hence the cyber attack resiliency of these

critical functions get enhanced. The major contributions are listed as following.

• Wide area protection (Chapter III) - A novel Multi-Agent System (MAS) based protec-

tion architecture is adopted in the implementation of a load shedding protection scheme. A

data-driven attack detection algorithm with good interpretability named as Support Vector
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Figure 1.3 Cybersecurity concerns of smart grid

Machine embedded Layered Decision Tree (SVMLDT) is proposed. Besides, an adaptive op-

timal load shedding strategy is designed to mitigate the impacts of Denial of Service (DoS)

attacks.

• Wide area control (Chapter IV) - A station-level anomaly detection module based on

clustering is proposed for the generation control, which mainly depends on the behavior cor-

relation among peer generators. To counteract the malicious attacks targeting supplementary

generation control, a peer-assisted control signal estimation algorithm is presented which ad-

dresses the compromised control commands by replacing them with estimated control values

based on the information received from the peers with “good reputation”. The proposed

solution can serve as a countermeasure to data availability and integrity attacks targeting the

generation control commands.
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CHAPTER 2. CYBERSECURITY OF WAMPAC IN SMART GRIDS

Although the advancement of ICT and its application have facilitated the WAMPAC functions’

realization and improved the overall efficiency of operation and maintenance of power grids, the

deployment of off-the-shelf commercial ICT solutions also results in the cybersecurity issue. This

chapter overviews the cybersecurity vulnerabilities and threats existing in smart grids, briefs the

available countermeasures, and then discusses the opportunities to enhance the cybersecurity of

critical grid functions - WAMPAC.

2.1 Cyber Vulnerabilities of WAMPAC

Cyber security was not a major concern during the WAMPAC design twenty years ago or even

later, when non-digital end-to-end copper cables were still widely used in substation communication

and “security through obscurity” worked well so that not many cyber attack trials were observed

or reported. When people started to resort to digital WAMPAC solutions based on ICT, vendors

still used to focus on improving the availability and reliability of these functions, without fully

considering the potential impacts resulted from cyber disturbances. Therefore, as a legacy, most

WAMPAC functions in today’s power industry lack the necessary security mechanisms and therefore

are vulnerable to cyber attacks.

• Public network connectivity: Physical segregation of the IT and OT networks in

power sector is inconvenient and also expensive. To reduce the implementation cost, it’s

not rare that utilities choose to leverage public accessible networks (Internet) to realize the

data/information transmission involved in WAMPAC [4]. Most of the cases, the corporate

networks of utilities (IT networks) are connected to the Internet such that the third party

service providers and consumers can access the data and information that are intentionally

shared with them. In the meanwhile, the OT network is connected to the IT network such
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that the operators can have the remote access to the grid control system. Although the IT

and OT networks are often separated with DMZ (Demilitarized Zone) as a way of isolation,

the adversary still possess various means to infiltrate into the OT network by bypassing the

authentication or ingress filtering mechanisms provided by the DMZ. For instance, the con-

nection can be established with the socket request initiated from the OT network or the

leakage of the remote access credentials to the OT network from an IT domain workstation.

The integration and overlap between the IT and OT networks provide the attackers with po-

tential chances to gain the access to the critical OT functions [5]. When the attacker finds his

foothold in the OT network, he is able to access the sensitive data, alter critical information

and even manipulate the settings of digital devices, etc.

• Communication protocol: Most communication protocols used today in power industry

like Modbus and DNP3 do not provide security measures. The lack of data encryption and

authentication makes it possible for the threat actors to alter, intercept and spoof the data

in transmission. Data theft leads to privacy concerns, and even worse, the adversary can

exploit the vulnerabilities of the communication protocol to launch data integrity attack so

as to cause malfunctioning by sending erroneous data or command signals to the WAMPAC

functions or the actuators involved.

• IT and OT devices: The components that constitute the IT and OT networks in power

system include software, computer operating systems, IEDs, routing devices, etc. Well-known

vulnerabilities of these components can be directly exploited by the attackers, and it is also

not difficult for the adversary to attain the same devices or software and then find out the

zero-day vulnerabilities through comprehensive testing. Trojan and virus can be delicately

designed and launched to compromise those components.

• Supply chain: The vulnerabilities embedded in the supply chain also leave the adversary

opportunities to carry out attacks targeting the down streaming applications. Sometimes it is

relatively easier to target the vendors than directly intrude into the power system OT network.
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The control access and the anomaly detection tools of the vendors are often less secure since

they are not directly running the critical infrastructures. For example, backdoors can be

injected into the WAMPAC software before they are brought online in the power system.

• Function design: Most WAMPAC functions are designed without fully considering the

functional robustness or resilience, such that whenever all the defensive strategies fail, it costs

the adversary nothing to disable or manipulate the WAMPAC at his will.It is desirable that

WAMPAC functions can stay attack-resilient itself to a certain extent and this will serve as

the last line of defense.

• Human: Last but not least, human employees often turn out to be the most vulnerable link

of the security chain [6]. Careless or disgruntled employees might cause great damage either

indirectly or intentionally, since they may possess the privilege to access critical data base or

WAMPAC configurations and setting, etc.

2.2 Potential Threats and Attacks

Various cyber threats exist in today’s smart grid [5]. Cyber threats could potentially arise from

individual hackers, industrial spies, terrorists and hacktivists, nation-state affiliated adversary, and

even discontented employees [7].

In general, the goal of the attackers is to interrupt the WAMPAC system by sabotaging three

things: confidentiality, availability and integrity. For traditional IT sector, confidentiality is the

most recognized concern since people worry about private data/info leakage and financial loss be-

cause of data theft. But for the operation of critical infrastructures like a power system, availability

and integrity are more critical. Most potential threat actors aim at compromising the availability

and integrity of WAMPAC systems to degrade the system reliability.

A vast amount of cyber attacks targeting smart grid are happening every day, but most of them

do not actually result in damages and are not reported in public. PJM Interconnections former

CEO, Terry Boston, once mentioned that “the utility experiences 3,000-4,000 hacking attempts
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every month [8]”. Out of so many attacking trials, a few indeed succeed. On Dec 23, 2015, a cyber

attack took place in the Ukraine power grid after a 6-month-long reconnaissance and the attackers

successfully disconnected 30 distribution substations for about 3 hours causing significant outages to

80,000 customers [9]. Dec 17th, 2016, another Ukranian transmission substation was disconnected

from the grid by a new malware called CRASHOVERRIDE and this caused 200 MW loss of load.

A couple of real cyber attacks were seen by other critical infrastructures, and researchers agree

that the similar tools can be utilized against power girds too [4]. Stuxnet is a malware developed

in 2005 to target Industrical Control System (ICS) SCADA systems and it reprograms ICS PLCs

specifically to compromise the system control capabilities. It shows a high level of sophistication

and stealth - 4 zero-day exploits are embedded and has becomes widely known after taking down

1/5 of Irans nuclear centrifuges via SIEMENS PLC devices [10]. Stuxnet was distributed through

unauthenticated USB drives, while sophisticated virus and malware can also be delivered to the

targets via social engineering tactics in order to infiltrate and take over the OT network [9]. In

2017, a malware named as “Triton” was used to shut down a petrochemical plant in Saudi Arabia

and the target of the malware is the security instrumented systems Triconex from Schneider [11].

Except for the limited number of real attacks that have been publicly reported, different research

efforts help identify the potential risk when critical power system functionality is under malicious

cyber attacks [12]. Liu et al. have investigated the impacts of switching attack from the perspective

of system stability [13, 14]. Cyber attacks targeting WAMPAC are identified, implemented and

analyzed on hardware-in-the-loop testbeds [15, 16, 17, 18] and it was demonstrated how malicious

attacks could potentially cause severe reliability and stability impacts through the experimental

studies.

For most of the cyber attacks targeting on WAMPAC of smart grids, the attacks can be cat-

egorized into three types according to the initial targets in the context of the closed control loop

shown in Figure 1.2.

• Backward path attack, i.e. measurements attack. The adversary can cause the WAMPAC

to malfunction by injecting false measurement data along the sensing path. This can be
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achieved either locally by tampering the the sensors or manipulating the data along the

telecommunication routes with means such as Man-in-The-Middle attack (MITM). This type

of attack can be detected and mitigated by countermeasures available in the control center

such as centralized anomaly detection, bad data detection adopted in state estimation and

other redundant data based cross-checking methods, etc.

• Forward path attack, i.e. control signals attack. If the attacker knows that the manipulated

measurements are likely to be detected in control center, he might turn to the control signals

seeking for better luck. For example,Area Control Error (ACE) transmitted from control

center to generating stations can be changed in the WAN by MITM attack too, and not like

control center, when a power plant receives an erroneous ACE value, it is much more difficult

for it to detect that due to the lack of a global view.

• Direct control. Although rarely happens, potentially the adversary does have a capability

to control the grid operation at will if he is able to intrude into a control center or a substation

and attains the necessary control privilege. Equipment damages will be easily induced like

what has been demonstrated by Idaho National Lab with the Aurora attack [19].

2.3 Existing Countermeasures

Except for cyber vulnerability, threat and risk assessment or the system restoration strategy

design that serve as tactics to improve the system preparedness when facing cyber attacks [20, 21],

three types of countermeasures that people often resort to as efforts to secure the critical smart

grid functions like WAMPAC include adoption of conventional IT security solution, best-practice

regulation, and attack resilient function design.

Conventional IT security solutions such as communication network segregation, multi-factor

authentication, cryptography and IT domain IDS (intrusion detection system) and IPS (intrusion

prevention system) are widely adopted as countermeasures to potential cyber attacks [22, 23, 24,

25, 26]. More secure communication protocols are developed [23, 24] for industrial control systems
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that bring security features such as authentication, packets encryption, etc. Similar to trying to

protect an infant from a wolf with the most solid shield, the IT domain security solutions help cover

the sensitive data and components of the power grid and make it more difficult for the adversary to

obtain access to those assets. Such defensive actions seek to secure the operation of power grid by

pinpointing and defending every vulnerability, but unfortunately no system stays flawless. Besides,

even a secure periphery is not enough to stop a disgruntled insider or the adversary who possesses

tremendous resources and tactics.

Different institutes, such as North American Electric Reliability Corporation (NERC) and Na-

tional Institute of Science and Technology (NIST), have made best-practice standards as mandatory

compliance or recommendations for power system participants to follow [27, 28]. NERC is desig-

nated by FERC and has been working on Critical Infrastructure Protection (CIP) standards posed

as enforceable regulations for bulk electric systems (BES) [28]. NERC CIP 6 covers the topics as

following:

• CIP-002-5.1a BES Cyber System Categorization

• CIP-003-6 Security management controls

• CIP-004-6 Personnel and training

• CIP-005-5 Electronic security perimeters

• CIP-006-6 Physical security of BES cyber systems

• CIP-007-7 System security management

• CIP-008-5 Incident reporting and response planning

• CIP-009-6 Recovery plans for BES cyber systems

• CIP-010-2 Configuration change management and vulnerability assessments

• CIP-011-2 Information protection
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• CIP-014-2 Physical security

The “Framework for Improving Critical Infrastructure Cybersecurity” proposed by NIST results

from Cybersecurity Enhancement Act of 2014, and it is supposed to be “voluntarily adopted” by

critical infrastructure owners [29]. This framework suggested put emphasis on the business drivers

which can help the utilities secure their assets and it also advise to incorporate the cybersecurity

risk into the risk management process.

Cyber security of the power system can be highly improved but again the regulation cannot

cover all possible attack vectors and such that it is not able to help when facing unprecedented

zero-day exploits. Recently, the idea to make WAMPAC functions themselves situation-aware and

self-adaptive to achieve better cyber resilience has become attractive. Under the dome of this

philosophy, the WAMPAC functions do not have to stay uncompromised all the time, but if they

have the knowledge to properly deal with known or unknown situations where cyber attack occurs,

its resilience will be significantly improved. Exploration in this work is mainly conducted towards

this direction.

2.4 Challenges and Opportunities

History has proved that the advent of any technical innovations can become a two-edged sword.

This is also true in terms of applications of ICT and big data technologies in smart grid.

2.4.1 Information and Communication Technology

Before power industry observed the advancement of information and communication technology

at the beginning of 21st century, most of power plants and substations in the power system uti-

lized analog devices and communication channels to monitor and control the grid operation. The

efficiency of power system operation, control, maintenance and restoration is low back to that time

and the capabilities of these functions are very limited too. Later on, with the progress in the IT

domain, application of assorted ICT technologies becomes popular in the power industry and power

systems start to enjoy many benefits like wide-area data acquisition, highly efficient and accurate
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data processing, and automatic control of the system at much lower cost and evolve towards today’s

“smart grid”. Market, PMU/WAMS, demand response, highly integrated renewable energy control

and many other ancillary services are all representatives of successful application of ICT in power

systems, and none of them can be realized without the high speed communication and information

processing techniques. However, in the early days of applying ICT, the first priority in function

design is the functionality and reliability rather than security, which renders the power systems no

longer immune to cyber threats, as one of a few undesirable side effects along with all the benefits.

Pros and cons are obvious for the ICT application in power industry, and apparently it is not

possible to go back and remove ICT from power systems in order to rid the cyber issues. ICT has

become an integral part of the smart grid. To the opposite, we should explore how to better apply

the ICT to reduce the cyber issues it brought in the first place.

Though digital intelligent devices and optic fiber have replaced the analog transducers and

copper cables, the communication pattern in today’s “smart grid” does not differ much from its

predecessor. The control center still plays as a master among slaves (substations) in most inter-

connected power grids. The intelligence and capabilities of the substations are limited, not by the

technology but rather by the conservative attitudes to improve. The cost of ICT application keeps

decreasing nowadays and the utilities do have the ability to construct their own communication

infrastructure. Some utilities are even helping the rural areas with their broadband Internet access

[30]. Nothing really stops a substation from being constructed in such a way that it possess high

intelligence and autonomy and also the capability of peer-to-peer communication. This will be

especially beneficial to improve the attack resilience of smart grid. But this time, cyber security

has to be surely encompassed when applying ICT.

2.4.2 Smart Grid and Big Data

Daily operation of smart grids creates a vast amount of data that include equipment operating

status, bus voltages, transmission line power flows, and load levels, cyber events logs, etc. These

data, at least part of them, is required to be stored for future usage such as post event analysis
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because of the valuable information is underlying. Recently, only around 2 percent of the data get

utilized [31]. How to incorporate these data poses great challenges to the power system designer.

A power system needs to engineered in such a way that it is able to deal with big data efficiently

including mining the valuable information out of the raw data with appropriate data processing

methods. Such capabilities could be leveraged to assist the development of various applications

such as visualization and anomaly detection. Big data can be characterized in terms of four “V”s

- i.e. volume, variety, velocity and veracity and these four facets should be fully considered when

trying to develop a data-driven function.

• Volume: Like many other industrial critical infrastructures, power system operates contin-

uously 24-7 and thus the sample measurements easily accumulate. For example, the second-

level power consumption data of all homes in New York State within a day could be 127.1

TB [32]. The PMU data generated by US power industry only can be up to 7.5 petabytes

per month [31].

• Variety: Sophistication of the power system has determined the heterogeneous of the data.

Data from sources such as transducers, IEDs, control center and networking devices can be

in the form of nominal data, numeric data, log texts, and even video/audio files. Reference

[33] has provided a list of the possible data sources in smart grid.

• Velocity: The sampled data such as SCADA measurements and phasor measurements are

fed into the control center as data streams. Specifically for the phasor measurements, its

update speed will be quite fast. The sampling rate could be up to 128 times per second.

• Veracity: Due to the flaws of sensing devices and the data transmission paths, the mea-

surements could of bad quality. Therefore, bad data should also be treated as one type of

anomaly.

The nature of power grid operation data has made the data storage and processing very chal-

lenging, but data also contains valuable information which can significantly help with equipment
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status monitoring, system overarching state detection and control decision making, given that the

information can be efficiently mined out of the raw data. Many efforts have been dedicated to

the design and application of data-driven methodologies in power systems. Machine learning tech-

niques have demonstrated great competence in extracting information from large amount of raw

data. Some general techniques summarized as below in general can help better leverage the bid

data available in smart grid in an efficient way.

• Classification methods: When the number of data instances obtained is reasonably small,

they could be labelled by experts indicating the class that they belong to. Then, supervised

learning based classification can be utilized. After the training, a “model can be derived and

it judges what class of a given data instance is. Many different classification methodologies

exist for this purpose. For instance, Decision Tree (DT) delivers the detection model as

a tree which embeds all decision-making procedures and the model that a Support Vector

Machine (SVM) attains is a hyperplane specified by a group of optimized parameters. In the

detection stage, a new data instance will be classified according to its location in terms of the

hyperplane. Ensemble methods leveraging multiple simple classifiers, such as random forest

and boosting, can often get better overall performance.

• Clustering: When the amount of data instances is too large to label, semi-supervised or un-

supervised machine learning techniques can be applied. K-means clustering and hierarchical

clustering are distance based methods that are proper for scenarios with evenly distributed

data instances, and Density based methods such as Density Based Spatial Clustering for Ap-

plication with Noise (DBSCAN) performs better when the clusters possess different densities.

• Data processing: Another key technique in application of machine learning is the dimen-

sionality reduction. For data set with many features, dimensionality reduction is necessary in

order to improve the computation efficiency and visualize the data. The selection of dimen-

sionality reduction technique depends on the concrete problems. For some problems, linear

techniques such as Principal Component Analysis (PCA) performs well but for the others,
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if the instances are concentrated on the nonlinear manifolds in the original hyperspace, non-

linear dimensionality reduction algorithms such as t-SNE is a better option. In some special

scenarios, if the relationship among features are well known with domain knowledge, people

should try to reduce the dimension by applying their expertise first which could often obtain

better results in feature extraction.

All data mining and machine learning techniques attempt to discover certain underlying rules

or patterns from available data. It is well known that model obtained via this type of techniques

could only be as good as the data, and this reveals one of the salient shortcomings of the data-

driven methods - the model after training is only able to make inductions but not deductions

considering that it might not have fully incorporated the inherent nature of the system that it

oversees. However, data-driven methods often turn out to be the best options in practice rather than

model-based methods, because in most of these cases, to derive an accurate model-based solution is

too difficult, if not impossible at all. Besides, the data-driven methods can automate and speed up

the induction process, and they provide much better performance in terms of efficiency and efficacy

compared to human experts. In the meanwhile, the application of data mining as assistance to

automatic control systems such as WAMPAC often results in data processing overhead. Therefore,

the selection of methodologies should be carried out based on the characteristics and needs of each

concrete problem.

2.5 Enhance WAMPAC Resilience from New Perspective

Considering the vulnerabilities and threats existing in the cyber layer of a smart grid and also

the mature technical progresses observed in the sectors like ICT and data science, this work selects

two critical WAMAPC functions, i.e. wide-area protection and automatic generation control, and

investigates the potential solutions to enhance the cyber security and resilience of the two functions

based on functional decentralization and machine learning.

As detailed in Figure 2.1, this work consists of two parts. Part 1 focuses on the study of System

Integrity Protection (SIP) schemes, specifically explores the function decentralization based on
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Figure 2.1 Holistic dissertation structure

Multi-Agent System (MAS), anomaly detection with data-driven methods and self-adaptive load

control as means to make the SIP in smart grid more resilient when facing Denial of Service

attack. Data integrity attack has not been considered in this part. Part II examines how peer-

to-peer communication among the generating stations can help with detection and mitigation of

attacks targeting the power system generation control values. Power industry domain knowledge

is utilized in the feature engineering, and clustering methods are adopted to detect attack induced

anomalies. Besides, a peer-assisted mitigation is proposed when the forward control path of AGC

gets compromised. Both availability and integrity issues along the forward path can be mitigated,

and this work does not cover cyber attacks targeting AGC measurements. Although methodologies

and algorithms proposed in this work are functionally specific, the philosophy underlying can be

applied to other WAMPAC functions. The proposed solutions involve the application of MAS,

optimization, machine learning, moving target defense (MTD) and also data estimation, which will

be further elaborated in chapter III and IV.
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2.6 Summary

This chapter has provided an overview about the potential cyber vulnerabilities and threats

of WAMPAC functions in smart grid. The advancement of technologies including ICT and big

data provides great opportunity to upgrade the WAMPAC so that the functions per se can become

situational-aware and adaptive and thus resilient when under cyber attacks.
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CHAPTER 3. MAS BASED ATTACK-RESILIENT SIPS

3.1 Problem Statement

One of the most critical WAMPAC functions in nowadays smart grids is System Integrity Pro-

tection Schemes (SIPS) [34]. Unlike the local equipment protection schemes, the responsibility of

SIPS is not to protect any single piece of equipment such as a generator, transmission line or a bus

bar. Instead, it maintains the stability of the whole system. SIP schemes collect system-wide data

and information via telecommunication networks and need to carry out proper protective actions

when facing predefined system conditions so that severe system problems such as catastrophic fail-

ures can be prevented [35, 36, 37, 38]. The most common controls that SIP schemes could perform

include load rejection, generation rejection, etc.[39, 40] and the wide application of Information

and Communication Technologies (ICT) in smart grids has significantly augmented the capabilities

and improved the efficacy of SIPS. Most of the SIP schemes today are installed as a centralized

master-slave system, i.e. the system-wide information is collected by the master where the decision

is made about current system condition. If the predefined conditions such as the disconnection of a

large generator is detected by the master, it will send control commands to multiple slave stations.

The role of slaves is limited to sensing and sending system measurements to the master and then

following any control commands received from the master. The cyclic data collection and control

actuation of SIPS heavily relies on wide area communication where abundant cyber threats exist.

Concerns with conventional centralized SIPS include

1. The centralized master is an ideal target and when it is compromised, a single point failure

will render the protection function completely inoperable [41].

2. Static protection settings are commonly utilized and the remedial actions might not be suit-

able when system operating state changes, either naturally or due to cyber attacks [42].
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To enhance the cyber attack-resilience of SIPS, and also to improve the economic performance

of SIPS, a novel decentralized SIPS design is proposed in this chapter based on Multi-Agent System

(MAS). In the context of a decentralized SIP scheme, cyber anomaly detection and self-adaptive

control are investigated as the two main subproblems to ensure that the SIPS solution proposed

possesses high level of situational-awareness and adaptiveness against cyber attacks. Assumptions

made in this part are listed below.

• Substations involved in the SIPS can be upgraded into intelligent agents.

• MAS is utilized on station-level, i.e., an agent represents a whole substation.

• Peer-to-peer communication is enabled among agents and each agent only needs to exchange

data with its directly connected neighbors.

• Only Denial of Service (DoS) attacks are considered. That is, it is assumed that the cyber

attack only makes an agent fail to communicate with others, but not send erroneous data.

Data integrity attacks can be mitigated by techniques such as cryptography.

• The legacy centralized SIPS is kept as part of the decentralized SIPS.

3.2 Related Work

This section first summarizes the efforts that have been taken to enhance the cybersecurity of

SIPS, and then overviews the application of MAS, data-driven algorithms and adaptive control

schemes in smart grid respectively.

A rule-based intrusion detection system with Multi-Agent System (MAS) is proposed in [41] to

distinguish cyber attacks and normal faults and this study focuses on local protections. Distributed

Special Protection Systems (SPS) based on agents and peer-to-peer communication is advocated in

[43]. The distributed protection systems presented in that work leverage “reputation-based trust”

to identify untrustworthy agents statistically and “data retransmission” mechanism to reduce the

impacts of data loss. However, the proposed solution requires large amount of redundant data
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being simultaneously fed into a few on-line controllers. Although the redundancy of measurements

and controllers helps detect and mitigate Byzantine failures, countermeasures such as cryptography

could be comparatively more effective and economic to achieve the same goal.

Multi-Agent System (MAS) is an appropriate architecture that supports decentralization. McArthur

et al. have conducted a survey about the application of MAS in power system [44, 45], according to

which the MAS has been applied to realize back-up protection, system condition monitoring, mar-

ket and micro-grid control, etc. The authors propose two MAS organizations for dynamic voltage

control in [46]. The team organization is statically assigned to one MAS and is not as flexible as

the holarchy organization since it allows the MAS to exchange agents dynamically according to the

current system operating condition. In [47], the authors propose a protection scheme to prevent

cascading events based on MAS such that the status of system can be monitored in real time and

the emergency control can be optimized. [48] proposes a MAS that can evolve during attack and

X. Tong et al. studies the application of MAS to realize wide area backup protection [49]. Ref-

erence [50] has proposed a layered MAS based intrusion/anomaly detection system aligning with

IEC 62351. It provides good division in terms of the detection at different layers, i.e. node layer

(local) or system layer (system wide). C. Rieger et al. present a hierarchical MAS architecture

in [51, 52] which could naturally fit into power system architecture. Paper [53] also proposes to

use hierarchical MAS to carry out anomaly detection for wide area protections. The MAS archi-

tectures and agents characterization found in all the aforementioned work are inspiring, but not

many explorations are conducted on the design of cyber-attack resilient functions using MAS. We

can safely conclude that MAS is an attractive and promising solution that power researchers resort

to in order to resolve various problems by leveraging its salient features including self-adaptive,

autonomous, flexible, etc. But not much efforts are spent trying to answer how the decentralized

architecture can in fact help improve the attack resiliency and what cyber concerns exist in a MAS

itself.

Huge amount of data are generated in the daily operation of power system [33], both from

the physical layer and the cyber layer. It is extremely hard for human operators to effectively
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find the valuable information underlying. Recently, machine learning techniques and artificial

intelligence have demonstrated outstanding capabilities in handling big data automatically, and

many researchers are trying to leverage it to resolve the problem of data mining in smart grid.

Applications in power systems of machine learning include transient instability detection [54, 55,

56, 57], bad data detection and anomaly detection [58, 59, 60], etc. Paper [58] comes up with a state

based intrusion detection algorithm called common path mining. The algorithm leverages merged

data sources and detect attacks if the common path deviates from the possible normal paths. [55]

proposes a PMU data anomaly detection methodology based on unsupervised ensemble machine

learning. [59] proposes a multiple event detection based on moving window PCA. A PCA & SVM

based false data injection detection method is proposed in [61].

Unlike the common practice that massive off-line events analyses are carried out as reference

of on-line applications, a decision support tool, Multi-layer Data-driven Advanced Reasoning Tool

(M-DART), is presented in [62]. It handles various data sources in a dynamic way such that the

massive data can be processed in time to improve the situational awareness. Most of the data-driven

applications proposed are centralized implementation and needs the access to global data. How to

apply the data-driven algorithms in a decentralized architecture mainly with locally accessible data

is worth investigating. The redesign of critical power system functions could be the key to make

the system more attack resilient.

Dynamic schemes used for load shedding are investigated in [63, 64]. Similar idea is adopted

in the proposed solution. This will grant the MAS the ability to determine the optimal loads that

shall be shed when the triggering condition is observed. Besides, an DoS attack adaptive version

is proposed so that the SIPS can deliver the remedial actions to the best effort even under attack.

3.3 Overview of SIPS Application

Figure 3.1 summarizes the common SIPS utilized in smart grids, including the trigger conditions,

remedial actions and timing requirements [35]. Among all possible remedial actions, the load

rejection and generation rejection are the two mostly adopted to handle the stability issues of
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Figure 3.1 Power industry SIPS summary

power grids. The timing performance of SIPS also varies depending on purposes of the protection.

Schemes equipped to alleviate transmission line thermal overloading conditions are often allowed

up to tens of minutes.

3.4 Decentralized SIPS based on MAS

Most conventional SIP schemes comprise a master and a few geographically dispersed slaves.

SIPS master is able to collect data, detect targeting events, and then determine and send the control

commands to the slaves. On the other hand, slaves are only required to follow the commands from

the master and correctly carry out the remedial actions. In such highly centralized schemes, the

master is prone to availability attacks such as Denial of Service (DoS) and intrusion attempts like

spear phishing attack. Loss of the master will either lead to hidden protection failures or immediate

system impacts when under a coordinated attack. In this section, a peer-to-peer MAS architecture

is proposed as an alternative for SIPS implementation.

3.4.1 SIPS Implementation within Decentralized Architecture

An agent is an object possessing a specific set of resources (processors, memories, sensors, actu-

ators, etc.) and behaviors (such as informing, requesting, offering, accepting, rejecting, competing
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with or assisting one another). Multi-agent System (MAS) is a group of agents that communicate

and interact with each other to realize various tasks with certain level of autonomy.

Typical MAS architectures include hierarchical [46, 51], peer-to-peer [49], etc. Considering that

hierarchical architectures still discriminate between agent roles, which means that the agents of

more significance are more likely get attacked and other agents are not able to replace it if so, the

peer-to-peer architecture is adopted in this work. The goal is to ensure that when any part of the

MAS gets compromised, the rest agents are still able to provide the expected protective actions.

As depicted in Figure 3.2, the first principle in the proposed MAS design is that an agent

represents one substation or generating plant. MAS can also be utilized at a more granular level,

within one station for instance [51], but this type of MAS is out of our discussion. Communication

among agents are critical. One agent needs to talk to its neighbors to realize global data propagation

and to exchange specific situation information to achieve a consensus of the current system state,

etc. Thus the communication architecture design can have a significant influence on the performance

of MAS. Figure 3.2 shows one possible communication topology, which can be exactly mapped to

the physical layer. It’s a reasonable choice considering the availability of power line carrier and

also that the needs of information propagation is usually constrained to a group of stations close

to each other. A peer agent far away from the one needs assistance under stressed condition is not

likely to help as much and neither does it need to know about the stressed condition although the

relevant information can still be propagated via proper routing methodologies. In the later work,

we only care about the de facto communication connection status and do not put much emphasis

on the topology design itself.

3.4.2 MAS Characterization

As aforementioned, resources and behaviors are the two major facets of an agent. This section

will first discuss the data sources that accessible to agents from two different perspectives and then

describe the overall MAS operation.
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Figure 3.2 Peer-to-peer MAS architecture

3.4.2.1 Data Sources

Locally within one substation, the data accessible to an agent include physical layer measure-

ments, cyber information and processed metrics.

• Physical measurements - breaker/switch status, bus/generator terminal voltage, power

injection, power flows, and system frequency, etc.

• Cyber information - Information from cyber layer such as absence of expected mea-

surements/commands, unexpected packets, incorrect control sequential numbers, anomalous

events recorded by log files and indications from security management systems, etc.

• Preprocessed metrics - agents can preprocess raw data and compute information enriched

metrics to improve the efficacy of online applications. For example, the time interval between

two sequential frequency dips may reveal the tendency of cascading events [65].

From the system wide perspective, the data that an agent possesses or accesses could be classified

as
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• Public local information - Information that could be shared with other ally agents when

on request.

• Private local information - Sensitive data of an agent that could not be shared, such as

the load data of a critical feeder that this agent can not lose.

• Global information - Other agents’ public local information that have been successfully

propagated and collected.

Though barriers still exist to merge all the above data/information at the same module, it is

technically achievable. Agents could either obtain such data from sensing devices like what an RTU

does or directly get data from RTU.

3.4.2.2 Agent Actions

The coordination among agents highly relies on the information propagation protocol utilized.

One possible protocol has been proposed and it only requires one agent to communicate with its

directly connected neighbors. If two agents are not directly connected, they have to share the data

via other intermediate agents. The main actions of an agent involve

• Inform - One agent actively informs its neighbors about the data sets it possesses. An

“inform” message contains the data set(s) that just get updated and also a time stamp. For

instance, an ”inform” message could read as ”obtain new data from substation i at time

16:30:00”.

• Confirm - One agent should reply to the neighbors who have sent it global information.

• Request - One agent will send out data request to its neighbors to get the data in need.

• Send - One agent sends the requested public local data back to the agent requests for it.

• Receive - Upon the arrival of any packet, the agent will read it in and make a state transition.
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The overall behaviors of a single agent can be described by a Finite State Machine (FSM) as

shown in Figure 3.3. After the “Initiated” state, the agent will first send out “Inform” packets

to its neighbors and then automatically enter the “Receive” state. State transition takes place

according to the type of packets that an agent has received. Numbers marked on the outbound

arrows of a state correspond to the packet type labels inside the same state. For example, when in

the state “Receive”, the agent will go to state “Send Confirm” following arrow 1 when it receives

an “Inform” packet.

Figure 3.3 Agent actions as FSM

Figure 3.4 shows an example of data propagation among agents. The timing flow starts when

Agent 1 has obtained a new dataset. Then Agent1 will send ”inform” message to all its neighbors

except the one from whom it gets the data at the first place. In this case, Agent 2 and Agent 3

are the message receivers. As depicted, Agent 3 receives the ”inform” message without an issue,

but it finds that it already has the same data set with the same time stamp. Therefore, it only

replies with a ”Confirm” message. We assume that the connection between Agent 1 and Agent 2

is temporarily blocked at the beginning and thus the ”inform” message takes several trials to get

to Agent 2. Agent 2 checks his database and notices that it does not have the same data set or the
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one it has is outdated, thus it will send ”request” to Agent 1 following the ”Confirmation”. Agent

1 will send the requested data back to Agent 2.

Figure 3.4 Data propagation timing-flow among agents

3.4.3 Overall SIPS Design

The overall MAS operation flowchart is shown as Figure 3.5 with anomaly detection and optimal

load shedding as embedded functions. Anomaly detection is carried out locally by each agent but

a situation consensus has to be achieved by all the agents that are still interconnected before

taking any protective actions. Since the interconnected agents share predetermined data set with

each other regularly, after the consensus is obtained, all interconnected agents will form the same

optimization problem for load shedding. The remedial actions that one agent should carry out will

be attained after it solves the optimal problem. More details about the anomaly detection and

adaptive load shedding will be discussed in the following sections.
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A most noteworthy issue about any MAS design would be how to make the communication and

coordination among agents efficient. Timing requirement differs from application to application,

and it needs to get fully considered during the system design phase to make sure that the remedial

strategy can fit into the time window that it is allowed.

Figure 3.5 Agents overall operation flowchart



www.manaraa.com

34

3.5 Data-Driven Anomaly Detection of SIPS

A simple cyber security question one can have for centralized SIPS is that when the slave agent

does not receive any commands from the master controller, is it because no emergency occurs

or the commands are actually blocked by the adversary? There is no good way for centralized

SIPS to distinguish the two scenarios. For decentralized SIPS to handle such issues, a data-driven

anomaly detection algorithm named as Support Vector Machine embedded Layered Decision Tree

(SVMLDT) is suggested in this section and the anomaly detection only requires the local cyber

physical measurements. In order to label data instances during training, the CPS operations states

are defined qualitatively first.

3.5.1 Cyber Physical System Operating States Categorization

The operation states of a power system are conventionally classified as normal, alert, emergency,

in-extremis and restorative, according to whether the equality and inequality operation constraints

are satisfied or not [66]. Considering the increasing interaction between physical and cyber systems,

we have come up with a more comprehensive state transition diagram for a CPS as shown in Figure

3.6. Blue texts in a state block represents the cyber system state and red represents physical system

state.

• Normal state (N/0) - Both the physical and the cyber systems are free of anomaly, this

state is represent by either letter “N” or number 0. Similar idea applies to other states.

• Post contingency state (P/1) - When a physical contingency happens and the protection

scheme is free of attack and works as expected.

• Hidden failure state (H/2) - Part of the cyber system has been compromised but no

physical emergencies are observed yet.

• Alert state (A/3) - A protected physical contingency happens while the protection scheme

is compromised.
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Figure 3.6 Cyber physcial system states

• Emergency state (E/4) - The physical system is in a position where cascading events can

be triggered due to the malfunctioning of protection scheme.

• In-extremis state (I/5) - Power system becomes unstable where isolation is required. This

state will not be considered in anomaly detection.

Smart grid operates in the normal state most of the time, but it may enter abnormal states after

natural disturbances or malicious cyber attacks. The system enters restorative state to recover from

in-extremis state. In the restorative state, we assume that both the physical and cyber issues get

resolved. Some of the cyber capability of an agent in fact could have intermediate state between

“normal” and “compromised”. For instance, the communication bandwidth can be only partly

taken by DoS attack which results in certain delays. In this situation, the agent might still be able

to carry out the required data exchange with others. But to simplify the problem, these partially

compromised states are ignored.
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From the perspective of anomaly detection, each CPS state can be perceived as a specific

cluster locating in the hyperspace. Noticeable distances may or may not exist for any two clusters

depending on the selected feature profile. The anomaly detection can be formed as a multi-class

classification problem. Ideally, the anomaly detection needs to distinguish the normal states (N/0)

from the abnormal states that are either induced by cyber attack (H/2, A/3 or E/4) or natural

contingency (P/1). All the possible states except the in-extremis state will be further utilized for

data labeling and the goal of on-line application of anomaly detection is to find the Alert and

Emergency states where load shedding is required.

The performance requirements for anomaly detection in power system include

1. In the multi-class classification, the basic requirement is that the anomaly detection module

should be able to correctly detect compromised states (H/2, A/3 and E/4).

2. It is preferable to shorten the time needed for the data processing and detection.

3.5.2 SVM Embedded Layered Decision Tree

In [67, 68], researchers have proposed a decision tree based support vector machine (DTSVM) for

multi-class classification problem. It resolves the problem of unclassifiable region in the traditional

application of SVM in multi-class classification. This method focuses on all-continuous-feature

problem, but in power system, the feature space is a mixture of many continuous variables and a

similar amount of, if not much more, nominal variables. An improved version of DTSVM named

Support Vector Machine embedded Layered Decision Tree (SVMLDT) is proposed to solve the

multi-class classification in a mixed nominal continuous feature space.

DT stratifies the hyperspace one split a time with a specific feature and a specific feature value.

As shown in Figure 3.7(a), a split of a DT forms a linear hyperplane, whose normal is the axis

of the feature selected as the the decision condition at this split. Compared to numeric features,

this type of splitting works better with nominal features in terms of accuracy, although the most

advanced decision tree solution (for example, C5.0) can also classify in mixed feature space by

discretizing the numeric features [69]. As its name implies, the stratification process of DT can
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be visually modeled by a top-down tree, whose internal nodes represent splits of the hyperspace

and the leaf nodes represent the separated subspaces. Every leaf node of a DT has a class label.

The classification of a new data sample is achieved by walking along the DT from the root node

according to the decision conditions of internal nodes until a leaf is hit. This process can simply

be described by a sequential of “if else ” statements and thus DT is famous for its interpretability

and classification speed. The complexity of building a decision tree arises with feature selection,

over-grown tree pruning, tree ensemble methodologies, etc., and mature techniques have already

been developed [69].

Support Vector Machine (SVM) solves the classification problem by directly looking for an

optimal non-linear hyperplane that maximizes the margin between the samples from two different

classes in a numeric feature space by solving the optimal problem as shown in (3.1). Application

of non-linear kernels allows SVM to find a non-linear hyperplane [70]. Therefore, SVM has more

flexibility in terms of hyperspace division compared to DT (see Figure 3.7(b)). However, SVM is

ideal for binary classification problems. When it comes to multi-class classification, SVM can be

applied recursively with either one-against-one or one-against-rest strategy [70], which may leave

undefined regions [67] (shadowed regions in Figure 3.7(c)). In [67], the authors have proposed

DTSVM for multi-class classification. It successfully resolves the issue of unclassifiable regions as

shown in Figure 3.7 (d). However, DTSVM does not try to distinguish the numeric features and

the nominal ones during the learning process.

min
ω,b

1

2
‖ ω ‖2 +C

N∑
i=1

ξi

s.t. ξi ≥ 0,

yi(ω
>Φ(Xi) + b) ≥ 1− ξi, i = 1, . . . ,N.

(3.1)

Considering the nature of CPS anomaly detection and pros and cons of DT and SVM, SVMLDT

is proposed so that it leverages the evaluation speed of decision tree and the accuracy of SVM. First

all the nominal features will be utilized to divide the hyperspace according to a decision tree, i.e.,

Layer I tree. Second, for each leaf node in Layer I tree, DTSVM will be applied for further division
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Figure 3.7 Algorithms comparison

and render multiple Layer II trees. The final model obtained by SVMLDT looks like the one as

shown in Figure 3.8 In Layer I tree formulation, information gain (3.3) based on cluster entropy

(3.2) is used to determine the space division sequence while for Lyaer II trees formulation, the type

I DTSVM in [67] applied. More details are provide in Algorithm 1.

Entropy = −
N∑
i=1

[p(Ci)logp(Ci) + q(Ci)logq(Ci)] (3.2)

Gain(S,A) = Entropy(S)−
∑

v∈value(A)

|Sv|
|S|

Entropy(Sv) (3.3)

The overall SVMLDT training process is summarized as Algorithm 2. The process to form layer

2 trees mainly include following procedures

• Step 1: Call selectClass() to determine on one specific class C from all the class levels. This

algorithm will find a class whose centroid is “most away” from other classes;

• Step 2: Form a binary classification problem by modifying all other classes label;
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Figure 3.8 SVMLDT model

• Step 3: Remove all samples labeled as C;

• Step 4: Repeat Step 1 to 3 until sample data set becomes empty.

In fact, either SVM, DT or DTSVM can still provide an solution to our problem, but they all

have some disadvantages in theory. Table.3.1 shows the pros and cons of the 4 relevant algorithms.

The substation-level anomaly detection serves as the last line of defense by validating the control

commands received from the legacy centralized master module. This can be illustrated by the two

examples below.

• Replay attack when load shedding is not needed. Assuming that the attacker has the

capability to inject and send fake triggering commands to the substation agents, the anomaly
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Table 3.1 Multi-class classification algorithms comparison

Operation Pros Cons

DT Discretize continuous features speed accuracy in non-linear boundary

SVM
1. Treat nominal features as continuous

2. One-against-one or one-against-rest
non-linear boundary accuracy

1. speed

2. non-classifiable regions

DTSVM
1. Treat nominal features as continuous

2. Utilize SVM as nodes in DT

1. non-linear boundary accuracy

2. no non-classifiable regions
speed

SVMLDT
1. Use nominal features to form layer 1 tree

2. Apply DTSVM for every impure leaf node of layer1 tree

1. leverage the speed of DT

2. non-linear boundary accuracy

3. no non-classifiable regions

speed is not as good as DT

detection is expected to detect it. In fact, when a substation agent cross-checks all the data

sources it has, especially the physical measurements like system frequency and line flows, it

will notice that the load shedding triggering commands come from nowhere and the current

system state should be classified as “Hidden failure” state where no load shedding should be

performed.

• DoS attack when load shedding is needed. To the opposite of the first example, this

case represents a scenario where the physical contingency has taken place, however the load

shedding commands from the centralized node get blocked by the adversary. In this case,

the agents are also able to detect the anomaly since the physical system symptoms would

reveal the needs for remedial actions. As long as most of the interconnected agents reach an

agreement about the current situation, i.e. a consensus, the load shedding will be triggered

even without commands from the central module.
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Data: dataset S

Result: class Csep
1 for each class Ci do

2 find centroid distances {dij , j 6= i} between Ci and other classes

3 end

4 Csep = argMax
i

Min
j

(dij);

5 return Csep;

Algorithm 1: selectClass(S)

Data: dataset S

Result: SVMLDT model

1 Tree=NULL;

2 L1 tree=DT(nominal features);

3 Tree=L1 tree;

4 for each leaf node Sv in L1 tree do

5 if Sv is ”pure” then

6 label the leaf node;

7 else

8 take Sv as the root of a L2 tree;

9 class Csep =selectClass(Sv);

10 run SVM between Csep and rest data;

11 if both leaves are pure != TRUE then

12 do 9-14 recursively for the impure leaf;

13 end

14 embed L2 tree into Tree;

15 end

16 end

Algorithm 2: SVMLDT(S, Tree)
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3.6 Adaptive Optimal Load Shedding

SIPS often carry out remedial actions such as generation/load rejection, reactive power ad-

justment, etc. when certain stressed operation condition is observed. In this section, we mainly

investigate the adaptive optimal load rejection scheme within a MAS.

3.6.1 Optimal Load Shedding via Dynamic Programming

Most load rejection schemes utilized in practice only specify the total amount of load to be

shed under an emergency and do not take into consideration the current load profile and the

significance of load at different locations. In fact, for a centralized case protection where the global

load information is accessible, the load shedding problem can be formed as a 0-1 knapsack problem

(3.4). By solving the optimization problem, the amount of load to be shed at each location will be

determined. Similarly, via the load profile propagation, every agent in MAS is also able to get the

global load information. Then each agent can solve (3.4) independently and figure out the remedial

actions it should take and it will also be adaptive to the current system operation state.

max

N∑
i=1

Ki∑
j=1

xijvijPij

s.t.

N∑
i=1

Ki∑
j=1

xijPij ≤ PD − C

xij ∈ {0, 1}

(3.4)

Objective of the optimization problem is to keep as much load value as possible. In (3.4), N

is the total number of substations involved in the load shedding scheme and Ki is the number of

feeders in substation i. Pij (MW) and vij ($/MWh) represent the amount of load on feeder j in

substation i and the corresponding per unit load value respectively, PD (MW) is the total load

in the system and C (MW) is the amount of load must get shed when SIP is triggered. For load

rejection schemes, C is normally predetermined by contingency analysis and we assume this value is

known to every agent as a constant. Decision variables in the optimization is xij , and it takes value
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0 to shed the load of the specific feeder and 1 to maintain the load. We can see that the overall

objective of (3.4) is to preserve as much load value as possible after shedding required amount of

load. Per unit load value ($/MWh) vij is defined as (3.5) where LMP is the locational marginal

price and λfeeder is a constant indicating the feeder significance. Hence, the value of a feeder takes

the unit $/h and is defined as the product of Pij and vij .

vfeeder = LMP × (1 + λfeeder) (3.5)

3.6.2 Adaptive Load Shedding under Data Availability Attack

For a centralized load rejection scheme, it is not able to get the optimal load shedding solutions

some slave substations are not responsive. For MAS, same issue exist but the best effort remedial

actions can still be delivered due to the peer-to-peer nature of MAS. We assume that the impact of

data availability attacks is that the completely connected MAS gets broken into several intercon-

nected subgroups and nodes in different subgroups cannot exchange data with each other. In this

case, the global data propagation become impossible. Data integrity attacks are not considered

here. Given this assumption, our solution for adaptive optimal load shedding when under attack

is achieved as following

3.6.2.1 Proposed strategy

1. The total amount of load to be shed is determined by contingency analysis and is still denoted

as C.

2. Each agent records its load shedding proportion each time the protection is activated. Denote

the historical average as pavgi , see (3.11).

3. Load profile are propagated among all agents within a subgroup regularly.

4. Each subgroup of agents resolves the same dynamic programming problem as in (3.6).

5. Shed load according to the solution.
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max

Ñ∑
i=1

Ki∑
j=1

xijvijPij

s.t.

Ñ∑
i=1

Ki∑
j=1

xijPij ≤ P̃D − C
Ñ∑
i=1

pavgi

xij ∈ {0, 1}

(3.6)

When the communication among agents gets blocked, the originally interconnected MAS will be

segregated into several interconnected subgroups. Within one subgroup, the dynamic load profiles

can still be shared “globally”. Then the optimization is carried out respectively for each subgroup.

Ñ in (3.6) is the number of interconnected agents in one subgroup, P̃D represents the sum of

available load in the subgroup and C in (3.4) is replaced by the load amount that this subgroup

needs to shed. In this way, the load shedded in all subgroups will still sum up to C MW. A brief

proof is provided below.

Use matrix Pn×m to represent the historical load shedding records for all the n agents and m

times of protection activation as in (3.7). P ji is the amount of load that agent i has shed in the jth

event. C still represents the total amount of load the SIP has to shed every time it is triggered.

Equations (3.8)-(3.11) prove that when each subgroup of agents shed their load according to (3.6),

C MW of load will be shed in total. One assumption we made here is that the historical load

shedding records do not have attacks involved. It’s reasonable since the emergency events are rare

and any records injected by the adversary can be filtered out during post-event analysis.

P =



P 1
1 P 2

1 ... Pm1

P 1
2 P 2

2 Pm2

. . ... .

P 1
n P 2

n ... Pmn


(3.7)

n∑
i=1

P ji = C (3.8)
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m∑
j=1

n∑
i=1

P ji = mC (3.9)

n∑
i=1

m∑
j=1

P ji = mC (3.10)

n∑
i=1

pavgi =

n∑
i=1

∑m
j=1 P

j
i

mC
= 1 (3.11)

3.6.2.2 Performance comparison

The benefits of the proposed load shedding strategy include better economic performance and

higher cyber attack resilience when under data availability attack. A comprehensive performance

comparison between centralized SIPS and the decentralized one is provided in Figure 3.9. This

figure highlights that centralized SIPS is vulnerable to cyber attack (comparison on the left),

while decentralization helps improve the attack resilience (comparison on top). Since the proposed

load shedding brings the load value into consideration, the economy of load shedding can also be

improved by the decentralized SIPS (comparison at the bottom). Adaptiveness of the proposed

SIPS is demonstrated when the MAS is attacked (comparison on the right).

To better demonstrate this, a toy example is provided for the rest of this section.

Figure 3.10 depicts a protection scheme used for load shedding under a predetermined system

operating condition. The protection is supposed to shed 100MW load in total from substations

1, 2, 3 and 4 when the predetermined condition is met. All end nodes are interconnected with a

SONET ring. Each substation has its own load profile labeled. In the context of the centralized

SIPS implementation, A0 represents the master controller. Traditionally the centralized protection

treats all the load indifferently and it sequentially polls about the available load from the substations

and will trigger load shedding when enough load is reported voluntarily following a “first come,

first serve” philosophy. Besides, we will consider the same cyber attack which results in blocking of
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Figure 3.9 Performance comparison

communication at the two locations as depicted in Figure 3.10. Figure 3.11 compares the centralized

and decentralized protection in terms of the performance of load shedding.

In Figure 3.11, the tuple for each scenario contains two elements. The first is the total loss

due to load shedding, and second represents if system reliability is at risk. A red cross means the

stability of the system is at risk. Four different comparisons can be made corresponding to Figure

3.9.

• Vulnerability: The vulnerability of centralized protection is obvious since the controller is

able to communicate with only substation 1 and 2 when under cyber attack, which does not

provide enough load to be shed. Thus, the system still has stability issues even 90MW of

load is shed.

• Economy: Since the decentralized protection models the load shedding problem as an op-

timization problem, the MAS based protection will lead to less loss (92,000 $/h vs. 100,500

$/h).

• Resilience: When under the same data availability attack, the decentralized protection is

able to shed enough load considering that all the four substations are upgraded into intelligent
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Figure 3.10 Load shedding protection scheme

Figure 3.11 Load shedding performances
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agents and each has the capability to detect the system operating condition and shed the load

as needed. Thus the system stability will not be an issue if the decentralized protection is

adopted.

• Adaptiveness: The optimization problem as modeled in (3.4) cannot get resolved when

under cyber attack for each subgroup. In contrast, the adaptive version of load shedding

as represented in (3.6) adds more adaptiveness to the protection with negligible degrade in

terms of economic performance.

3.6.3 Agent Consensus Achievement

As depicted in Figure 3.5, before the load shedding can be carried out by all the agents, the

consensus about the current system condition has to be achieved among the interconnected agents.

For a MAS, “consensus” means that an agreement among all the agents is attained pertaining to

a certain quantity of interest. According to Lemma 1 in reference [71], for a connected undirected

graph G(V,E), the algorithm in (3.12) asymptotically solves an average consensus problem for all

initial states. xi is the state value of node i ∈ V , and aij represent the element of the adjacency

matrix of G, when node i and j are connected by an edge e ∈ E, aij = 1 otherwise aij = 0. (3.13)

provides the discrete-time average consensus model, in which ε is a small time step.

In the consensus algorithm, state x is the decision about load shedding of every agent. x takes

value 1 when the load shedding is necessary, and 0 otherwise. The average consensus algorithm will

asymptotically converge to the average of initial x values. Therefore, as long as the minority of the

agents make type 1 error (false positive) or type 2 error (false negative), the MAS as a group is able

to get to the same conclusion regarding the anomaly detection outcome with a specified threshold.

When the consensus value reaches an equilibrium that is beyond the threshold, the anomaly is

confirmed and such that the load shedding will be conducted by all the agents.

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)) (3.12)
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xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)) (3.13)

Ideally to implement a consensus algorithm in MAS, the messages about the state values should

have time stamps (such as PMU packets) such that data from all agents can be synchronized in

the discrete-time calculation in (3.13).

3.7 Evaluation Results

In this section, one SIPS that is used in Western Electricity Coordinating Council (WECC)

[40] is selected as study case to evaluate the proposed attack-resilient SIP design. Palo Verde is

a nuclear power plant in Arizona and it has 3 nuclear units whose generation is mainly consumed

by the load in the area of Arizona and Nevada. Through contingency analysis people have found

that when any two units in Palo Verde plant get disconnected from the system, electricity will be

imported from California and Oregon which results in the thermal overload on the COI (California-

Oregon Inter-tie). Geographic locations of the nuclear power plant is noted in Figure 3.12. The

SIPS detailed in [40] is installed to shed 120MW amount of load close to Phoenix and this helps

avoid the COI overloading. The scheme arms load shedding when the sum of any two generators’

output is greater than 2550MW, and it initiates load shedding only if two units out of three get

disconnected. The protection scheme is equipped at Palo Verde plant and the load shedding is

performed by 14 substations near Phoenix. The 15 stations involved in this SIPS is connected via

a SONET ring (Synchronous Optical Network), which is often used in power system to improve

the communication reliability.

3.7.1 Experiment Set-up

After examining the WECC system behavior and the specific protection needs elaborated in

[40], it is found that the same system behavior and needs for load shedding protection can be

reproduced in the IEEE 39-bus system, which is depicted in Figure 3.13.
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Figure 3.12 Load rejection SIPS in WECC

The bottom right region in the IEEE 39 bus system as shown in Figure 3.13 has 2350MW

generation (37.9%) and 927.5MW load demand (15%), and the extra generation will be sent out

through tie lines 16-19, 21-22 and 23-24. Simulation shows that when G8 is out of service, line

16-19 will gets overloaded and at least 100MW load needs to be shedded from load center near G8

so as to clear the overloading as well as the possibility of potential cascading events. In the original

SIPS design, the load to be shedded are those close to Palo Verde with low priority, and similarly,

the same centralized load rejection scheme is implemented in 39 bus system as following:

1. Load buses including bus 25, 26, 27 and 28 are selected as the load sources. 20% from 224MW

on bus 25, 20% from 139MW on bus 26, 20% from 281MW from bus 27 and 10% from 206MW

are preselected as the sheddable load.

2. The communication media is a SONET ring which connects the plant and 4 substations as

in Figure 3.14. It contains 5 interconnection links.
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3. Whenever the generation level of G8 is above 500MW, the sheddable load gets armed in

sequence from bus 25, and the arming signal will be turned off when the total load prepared

for shedding is more than 100MW.

4. In case when G8 gets tripped, a load shedding command from the power plant will be sent

to all substations in the loop and upon receiving this command, load armed previously will

get shedded.

Figure 3.13 IEEE-39bus with the load rejection RAS

In this study, the line overload threshold is set to 1.3 times of the pre contingency power flow,

and the overload tolerances are set to 50s for line 16-19 and 60s for line 21-22.

Overall experiment set-up is shown as Figure 3.15. The 39-bus system will be simulated in

real-time with Opal-RT simulator and agents that represent substation 25 - 27 are virtual machines

whose behaviors are coded in Java. The synthetic data exchange is achieved through OPC server
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Figure 3.14 Communication topology

and peripheral functions such as the centralized protection scheme, attacks and load changes are

all done with python scripts. Before getting to the evaluation of proposed solution, the rest of this

subsection will further analyze the nature of the system and the centralized protection scheme.

3.7.1.1 System Dynamics Exploration

System dynamics after loss of G8 while without any protection scheme are investigated to

demonstrate the system nature. Table 3.2 shows 3 tie line currents under different scenarios. The

sequential critical events include G8 tripping (about 85s), line 16-19 tripping (about 135s) and line

21-22 tripping (about 190s). Figure 3.16 shows the frequencies at different generator buses. After

G8 is out of service, line 16-19 first gets overloaded (6.542 > 1.3 × 4.781) and is tripped after 50

seconds. Line 21-22 will immediately become overloaded (9.379 > 1.3 × 6.552) after that. It can

be observed that after G8 and line 16-19 are tripped, the system is still stable. However, when

line 21-22 is also tripped 60s later, instability occurs. Figure 3.17 shows the frequency response

with load rejection protection equipped, which shows that after G8 trips, the rest of system still

maintain stable. Frequency of G8 is set to 60Hz after it is disconnected from the system.
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Figure 3.15 Experiment based on PowerCyber testbed

Table 3.2 Power flow of critical tie-lines

L16-19(pu) L21-22(pu) L22-23 (pu)

Pre-contingency 4.781 6.552 0.4466

G8 tripped 6.542 7.560 0.3000

L16-19 tripped 0 9.379 0.3809

L21-22 tripped 0 0 Unstable
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Figure 3.16 Frequency response without load rejection protection

Figure 3.17 Frequency response with centralized load rejection protection
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3.7.1.2 Centralized Protection Performance under Attacks

In this section, DoS (Denial of Service) attack and replay attack are chosen to test the perfor-

mance of the centralized protection scheme. Since the SONET ring can tolerate single point fault

on the ring, the DoS attack are designed as a coordinated double points attack where links 1 and

5 in Figure 3.14 are attacked. Attackers will trip G8 after starting DoS attack. By replay attack,

the recorded arming command and shedding command are injected in 1 when G8 is operating

normally. To save space, only the frequency response when the scheme is under replay attack is

given as Figure 3.18 and frequency response under DoS attacks is the same as Figure 3.16. This

demonstrates that the centralized protection scheme is quite vulnerable to cyber attacks.

Figure 3.18 Frequency response under replay attack with centralized load rejection pro-

tection
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3.7.2 Anomaly Detection Evaluation

For each agent, we have listed all the selected features utilized in anomaly detection in Table

3.3. First column Status includes the relevant breakers’ statuses for every agent. For example,

S25 26 represents the status of the breaker on line 25-26 near bus 25. Second column contains

features relevant to bus voltage. Vi and ai are the voltage magnitude and relative phase angle

respectively of bus i. Active power injections (both generation and load) are involved as shown

in column Inj.. Features in the fourth column are power flows and that in the fifth is system

frequency. According to the data taxonomy in section II, aforementioned features are all physical

measurements. In contrast, ∆t is a processed metric and it represents the time interval between two

sequential frequency dips. Each agent records last two values of this metric, which characterizes

the last three frequency dips. Carm and Cshed are cyber information which indicate the presence

of the “Arm” and “Shed” commands received from the legacy protection master.

Table 3.3 Measurements of agents

Agent ID Status V Inj. Flow freq timing Cmds

A25(Bus 25)

Sgen 8

S25 2

S25 26

V25
a25

P8

L25

P25 2

P25 26
f25

4tlast1
4tlast2

Carm
Cshed

A26(Bus 26)

S26 25

S26 27

S26 28

S26 29

V26
a26

L26

P26 25

P26 27

P26 28

P26 29

f26
4tlast1
4tlast2

Carm
Cshed

A27(Bus 27)
S27 26

S27 17

V27
a27

L27
P27 26

P27 17
f27

4tlast1
4tlast2

Carm
Cshed

A28(Bus 28)
S28 26

S28 29

V28
a28

L28
P28 26

P28 29
f28

4tlast1
4tlast2

Carm
Cshed

Synthetic training data are collected from following scenarios while system loads are configured

as static values.

• the targeting contingency (i.e. G8 trips) occurs without attack and the centralized protection

shed the load successfully.
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• irrelevant natural contingencies occur with centralized protection and without attack.

• when the legacy centralized protection is under a single-point or double-point DoS attack on

the ring network (15 scenarios) and then G8 gets tripped by the adversary.

Training data obtained are labeled according to the CPS operation states discussed in section

3.5. This data set is split into training subset and test subset, and the training subset is used to

attain the SVMLDT model while the test subset is used to evaluate the training error.

SVMLDT is realized with R language and packages “C50” and “e1071” are selected for the

DT and SVM implementation respectively. As a comparison, four different classification methods:

I. C50 (decision tree), II. DTSVM, III. SVMLDT, IV. K Nearest Neighbors (KNN) are trained

based on training subset. Table.3.4 - 3.7 shows the testing results of the test subset as confusion

matrices for agent 25 - 28. We can notice that C50 and SVMLDT obtain better detection accuracy

given that the false classification only occurs between either states N and P or A and E. Both

cases are acceptable compared to mis-classifying state N as A or vice versa. Random forest is also

applied to the same data set, and the accuracy of the five methods is summaries as in Figure 3.19.

Two different measures of accuracy are utilized for each classification method. Accuracy 1 (A1) is

the normal accuracy that considers all the classes separately while accuracy 2 (A2) is calculated

after merging the states N and P and states A and E respectively. The rationale behind the state

merging is that for state N and P, no load shedding is required, and in contrast, load shedding is

required for both state A and E. Therefore, the mis-classification between the two states that are

merged will not result in differences in terms of protection activities. A2 for every method is higher

than A1 because of the state merging. Figure 3.20 illustrates the detection accuracy of A3 before

states merging with different parameter selections of SVMLDT. (a) depicts the detection accuracy

where the radial kernel is selected for SVM, the x axis represents the γ selected and the box plots

vary in the cost value in the quadratic optimization. Similarly, (b) provides box plots in terms of

varying constraint violation cost, but the kernel selected in 3 degree polynomial. It’s shown that

the radial kernel can result in better accuracy and when the value of gamma takes 0.1 and the cost

value takes 10000, the accuracy is close to 0.995.
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Table 3.4 Algorithms comparison for Agent 25

I N P H A E II N P H A E

N 633 15 0 0 0 N 629 14 0 0 0

P 17 355 0 0 0 P 8 331 0 13 0

H 0 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8398 0 A 0 10 0 8732 0

E 0 0 0 0 1992 E 13 15 0 13 1992

III N P H A E IV N P H A E

N 627 11 0 0 0 N 629 27 0 0 0

P 22 359 0 0 0 P 16 268 0 1 0

H 1 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8387 3 A 5 75 0 8397 0

E 0 0 0 11 1989 E 0 0 0 0 1992

In order to evaluate the anomaly detection model with data not been observed during training,

we collect 2 more synthetic data sets. The first is collected from a scenario where legacy centralized

protection is running while the DoS attack is undertaken on both sides of VM G8 and then G8 gets

tripped. The second contains data collected during normal system operation involving a natural

line fault and dynamic load changes. The online detection results from Agent 28 are plotted

in Figure 3.21. Left vertical axis of all the 4 subplots represents the system frequency and the

right axis represents the CPS operation state. For example, a pulse ends at value 2 represent the

hidden failure state H. From the comparison of subplot (c) and (d), we can tell that both DT and

SVMLDT are able to distinguish the targeting events correctly. But the comparison between (a)

and (b) shows that DT has committed more misclassification between N and P than the SVMLDT

on the unobserved test data.

Figure 3.22 shows the timing performance of all the methods. It turns out that the SVMLDT

has least satisfactory timing performance. But since load shedding allows much longer time (mins)

compared to the detection time required (milliseconds), it will not be a significant shortcoming.

However, the good interpretability and accuracy of SVMLDT can still be leveraged.
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Table 3.5 Algorithms comparison for Agent 26

I N P H A E II N P H A E

N 638 31 0 0 0 N 630 40 0 0 0

P 12 339 0 0 0 P 6 292 0 12 0

H 0 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8398 0 A 0 19 0 8340 0

E 0 0 0 0 1992 E 14 19 0 46 1992

III N P H A E IV N P H A E

N 630 34 0 0 0 N 632 52 0 0 0

P 20 336 0 0 0 P 11 237 0 0 0

H 0 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8328 0 A 7 81 0 8398 0

E 0 0 0 70 1992 E 0 0 0 0 1992

3.7.3 Adaptive Optimal Load Shedding Evaluation

To evaluate the optimal adaptive load shedding algorithm, first we need to convert the lumped

loads on bus 25 ∼ 28 in the IEEE 39-bus system into feeder specific loads. Therefore, we assume

that substations 25 ∼ 28 each has 6, 4, 6 and 8 feeders respectively and each feeder transmits a

fixed proportion of the total load on this bus. Load profile of a feeder includes two facets - amount

and value, and the load fluctuation should be considered and added to the load values provided in

the base case.

3.7.3.1 Dynamic load profile

In order to make the load shedding scenarios more realistic, load dynamics should be involved

in the simulation. We utilize Area Control Error (ACE) values observed by Mid-continent Inde-

pendent System Operator (MISO) to mimic load changes in the IEEE 39-bus model. Two hundred

ACE values collected from MISO’s website [72] are used to generate the ACE Probability Density

Function (PDF) via kernel density estimation. Then we can draw ACE values from the PDF to

emulate the system load changes. These ACE values are scaled up to fit IEEE 39-bus model and

then they are proportionally split and assigned to each feeder. As for the “value” of the load on

each feeder, typical LMP values from the real time market of MISO are leveraged. The LMP for
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Table 3.6 Algorithms comparison for Agent 27

I N P H A E II N P H A E

N 637 18 0 0 0 N 636 41 0 0 0

P 13 352 0 0 0 P 2 309 0 4 0

H 0 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8398 0 A 0 8 0 8363 0

E 0 0 0 0 1992 E 12 12 0 31 1992

III N P H A E IV N P H A E

N 635 34 0 0 0 N 629 53 0 0 0

P 15 336 0 0 0 P 13 263 0 3 0

H 0 0 2333 0 0 H 0 0 2333 0 0

A 0 0 0 8376 0 A 8 54 0 8395 0

E 0 0 0 22 1992 E 0 0 0 0 1992

a bus is randomly sampled and then the load value is calculated as in (3.5) to represent the true

value of load. With this, we are able to inject the load dynamics in IEEE 39 bus model.

3.7.3.2 Adaptive control results

We first simulate the targeting contingencies (i.e. G8 is out of service) for ten times and run

adaptive load shedding algorithm such that the historical load shedding records are obtained as

shown in (3.7). Then the algorithm is tested against ten new contingencies that occur under

different system operation states. The objective value of the 0-1 knapsack problem is shown as

Figure 3.23. The “2-2 subgroups” represent a scenario where substation 25&26 and 27&28 are

separated into two subgroups due to DoS attack. Similarly, “1-3 subgroups” is the scenario that

substation 25 is isolated from other substations. It can be seen that when the MAS is separated

into subgroups, the load value preserved after load shedding is not as much as that when all the

agents are interconnected. However, the same amount of load are still being shed to maintain the

system stability. That implies that the decentralized agents is capable of delivering the remedial

actions to their best effort when under coordinated DoS attack, which is a desired improvement

compared to the centralized SIP which will not shed load at all when under the same attack.
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Table 3.7 Algorithms comparison for Agent 28

I N P H A E II N P H A E

N 641 12 0 0 0 N 638 78 0 0 0

P 9 358 0 0 0 P 2 279 0 8 0

H 0 0 2333 11 0 H 0 0 2333 3 0

A 0 0 0 8387 0 A 2 5 0 8376 0

E 0 0 0 0 1992 E 8 8 0 11 1992

III N P H A E IV N P H A E

N 637 72 0 0 0 N 629 34 0 1 0

P 13 298 0 0 0 P 8 318 0 4 0

H 0 0 2333 6 0 H 0 0 2333 0 0

A 0 0 0 8381 8 A 13 18 0 8393 0

E 0 0 0 11 1984 E 0 0 0 0 1992

3.8 Summary

This chapter presents a decentralized load shedding SIPS based on MAS. An data-driven algo-

rithm named as SVMLDT is proposed for anomaly detection and the adaptiveness of the protection

is enhanced by the optimal adaptive load shedding strategy proposed.

Conversion from a centralized function architecture to a decentralized one eliminates the pos-

sibility of function loss due to the compromise of the centralized end node, since the intact agents

of a MAS could still provide the protection function even the other agents are rendered inoperable

by cyber attacks. This conversion only requires that certain intelligence is added to the substation

agents involved in the legacy centralized protection, instead of replacing the centralized protection

with the MAS.

The data-driven anomaly detection capability is added to the MAS to ensure that each agent can

stay situational-aware, especially facing cyber attacks. Diversity of the data sources and algorithms

adopted by different agents used in anomaly detection further improves the cyber attack resilience.

Besides, as the last line of defense, the anomaly detection module serves the purposed of validating

the protection commands from the legacy centralized module.
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Figure 3.19 Accuracy of classification

The adaptive load shedding strategy proposed not only improves the way how load should be

shed when it becomes necessary, it also stays effective when the MAS is under data availability

attack. The load shedding scheme proposed is not able to tolerate data integrity attacks, what may

require the adoption of cryptography techniques.
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Figure 3.20 Parameter tuning for SVMLDT
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Figure 3.21 Agents overall operation flowchart
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Figure 3.22 Algorithm timing performance

Figure 3.23 Load shedding results
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CHAPTER 4. CYBER ATTACK DETECTION AND MITIGATION FOR

GENERATION CONTROL

4.1 Problem Statement

Maintaining the balance of electricity generation and consumption is the most critical task of

power system daily operation such that system frequency can be constrained around its nominal

value (60 Hz in North America). Various control strategies including generation governors and

Automatic Generation Control (AGC) have been deployed to achieve this goal, and they are com-

monly known as ”balancing and frequency control” [73]. System frequency is controlled by these

strategies through regulation of the power output of different generators to match the system load.

This functionality helps guarantee the adequacy of power supply when the power system undergoes

disturbances such as random load changes, loss of generation units, etc.

Balancing and frequency control highly relies on information and communication technologies.

For instance, the AGC algorithm running at a control center relies on the Supervisory Communi-

cation And Data Acquisition (SCADA) network to collect measurements from different substations

and then send the appropriate control commands back to control the output of different generating

units. As the SCADA increasingly leverages public communication network infrastructures for the

data exchange, the attack surface of balancing and frequency control is exposed to the adversary.

Not only the measurements of AGC such as system frequency, tie-line flows among different bal-

ancing areas, etc. can be manipulated to induce inaccurate control errors, the generation control

commands are also vulnerable to cyber attacks during transmission from control center to gen-

erating units. Although rare, some utilities do allow remote operators to control the generation

via Virtual Private Networking (VPN) connection during an emergency [74]. When the adversary

succeeds in cracking the VPN connection, very likely by first tampering with the remote operators’

home area network, he will be able to directly infiltrate into the power plants and carry out ma-
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licious controls of the generation. Some utilities may deploy a dedicated communication network

as a “Security as obscurity” defense, but careless or disgruntled employees can still cause severe

problems to generation control [6, 25]. Under/over frequency load shedding protection, stability

issues and even cascading failures might be triggered [15] due to this type of attack.

This chapter proposes methodologies that leverage the real-time generator power output and

ACE values received by different generating units to detect and mitigate malicious generation

controls at station level. The anomaly detection proposed is an online function that would be

implemented for each generator participating in AGC. It depends on the conformity of different

generating units by checking the data collected from multiple power plants within a sliding window.

The mitigation strategy proposed also needs local data as well as the data from neighbors via a

peer-to-peer communication network, the main idea is to estimate the ACE for one generator based

on its peers’ ACEs. The estimated ACE will be used to replace the suspicious ACE. Assumptions

made in this chapter are listed below.

• Stations involved in the AGC can be upgraded into intelligent agents.

• MAS is utilized on station-level, i.e., an agent represents a whole substation.

• Peer-to-peer communication is enabled among agents.

• Transition between two economic dispatches is not considered in the anomaly detection. In

other words, the detection will be disabled during every re-dispatch

• Not all the peer data sent to one generator can be compromised at the same time

• Dead band of the governor is ignored.

4.2 Related Work

False data injection attacks (FDIA) is the most widely investigated type of cyber attack that

targets AGC. FDIA results in miscalculated ACE at the control center by manipulating the mea-

surements such as system frequency, tie-line flows, etc. When the wrong ACE values are received
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by the generating units and used to raise or lower the unit output, the generation will mismatch

the load so that impacts can be induced. The attacking on AGC is formed as an optimization

problem in both [75, 76]. It’s been demonstrated that the attack is able to minimize the time

needed to drive the system frequency to a desired off-nominal value stealthily assuming that the

AGC measurements can be modified. Hardware-in-the-loop test-bed based evaluation of the impact

of cyber attacks on AGC has been carried out in [15]. This work demonstrates how the MITM

attack could influence the automatic generation control by manipulating the measurements or the

control commands. In reference [77], the authors model the load and frequency control with a

switched system and show that the instability of the system can be resulted from DoS attack that

is launched with proper timing against the measurement sensing path.

Countermeasures against malicious generation controls have also long been explored by re-

searchers, and most countermeasures are proposed to be set up at the control center level. In [78],

a model-based attack detection method for AGC is presented, which is aided by short-term load

forecasts. The detection rules are proposed in terms of the absolute and cumulative value of Area

Control Error (ACE) observed. If either of the two is out of the statistical bounds, the measure-

ments are treated as anomalous. [16] has implemented these rules on the hardware-in-the-loop

testbed as further validation. A Unknown Input Observer (UIO) based anomaly detection and

identification strategy is proposed in [75], and again the attack under discussion is FDIA on the

measurements. A mitigation strategy based on redundant measurements is proposed in [76] such

that state estimation can be utilized to determine the measurements needed in AGC by removing

the bad measurements identified from the over-observed system.

Figure 4.1 provides a comprehensive schematic of the attack-defense competition in smart grid

related to generation control. The left part of Figure 4.1 depicts the structure of today’s power

system. The SCADA network 1 is utilized in the AGC and it connects the stations and the control

center. Peer-to-peer networks linking different stations also exist (see 2 ), but their capability is

limited and those networks often are only involved in certain local functions such as transmission

line pilot protections. To realize the detection and mitigation strategy proposed latter, such peer
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networks might need to be augmented in terms of capabilities like bandwidth but they are not

required to be as powerful as the SCADA network. With this cyber layer structure, the attacks

targeting AGC can potentially occur at four different locations: 1 , the attacker can choose to

intrude into the control center directly; 2 , the attacker can modify the measurements before they

arrive the control center; 3 , the attacker does have an option to directly manipulate the control

signal while it is being sent back to the stations; 4 , the attacker can also intrude into a station

to cause impacts by tampering actuators. Most of the existing literature focus on the detection of

attacks targeting the AGC measurements, namely type 2 depicted in Figure 4.1 and the detection

modules are placed at the control center level. Anomaly detection in control center is facilitated by

the convenient redundant data access, therefore, the requirement for detection accuracy could be

satisfied. However, detection functions located in the control center are not able to handle scenarios

where false ACE injection or ACE manipulation happens along the actuating path. Besides, only

detection is insufficient to eliminate the impacts of the malicious attack.

4.3 Power System Generation Control

Power system balancing and frequency control contains control actions of different timing gran-

ularities. Among the existing control actions summarized in [73], primary and secondary frequency

controls are activated most often and also more likely to be targeted by different threat actors.

4.3.1 Primary Control - Governor Action and Load Feature

Most of the generators are equipped with speed governors to stabilize power system frequency

after a generation-load imbalance occurs. To put it simply, what the governor does is that it

controls the generation output linearly according to the frequency deviation as shown in (4.1). βi

is a parameter called ”droop value” of generator i and it takes a negative value. The governor will

increase the generation when system frequency is below its nominal value (lack of generation) and

vice versa till a new generation-load balance is attained again. pu in (4.1) stands for ”per unit”,

which is a normalized value based on a base power and has no unit [79].
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∆Pi,pu = βi.∆fpu (4.1)

Whenever there is a load increase, the system frequency dips as generators provide the excess

energy by converting their kinetic energy before the governor action kicks in. Besides, most of the

motor loads in the power system will absorb less energy to help the restore the frequency back

creating a damping effect. This feature of load is ignored and constant load values are adopted to

simplify the problem.

4.3.2 Secondary Control - AGC

The North American power grid is functionally divided into several Balancing Areas (BA) over-

seen by different control centers. Among other functions, each BA employs the AGC algorithm

to maintain load-generation balance within the BA such that the overall grid frequency is main-

tained close to the nominal value of 60 Hz. Figure 4.2 presents a detailed view of an example AGC

implementation at a BA control center. The execution of AGC happens in the following three

steps.

Figure 4.2 AGC overview

Step 1 - ACE determination: The first step involves the calculation of the Area Control

Error (ACE) which represents the imbalance between generation and load in the BA. The ACE is

calculated using the equations provided in Figure 4.2, where, ∆Pnet and ∆f represent the difference

between actual and scheduled, tie-line power flows and frequency, respectively. The actual tie-line
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power flow and frequency measurements are relayed to the control center from field sensors through

SCADA network. The constant β is the frequency bias. The ACE that is calculated using this

equation represents the generation correction for the entire BA.

Step 2 - Generation allocation: The generation allocation logic uses participation factors

determined through the economic dispatch process to distribute the overall BA generation between

the participating generators. The output of this block is a desired power output Pi, for each

generator i participating in AGC. The Pi for each generator is directly transmitted via the SCADA

to the generation units controller. In other implementation architectures, raise/lower signal for

each unit may be calculated at the control center itself and transmitted to the units.

Step 3 - Unit control: The unit control logic compares Pi to the actual unit output to

determine corrective controls for the unit. This control is then issued to the governor prime mover

as a raise/lower command to directly alter the position of the speed changer, which proportionally

alters the power output from the generator.

It is to be noted that currently the AGC operates without any protection mechanisms that

validate the ACE at the generators. The ACE value that is calculated and sent from the control

center to the generators are typically sent over unencrypted DNP3 packets in the SCADA networks.

This makes it extremely vulnerable to cyber attacks such as Man-In-the-Middle (MITM) attacks

that introduce malicious generation set points to affect the frequency of the power system.

4.4 Generation Attack Detection based on Semi-Supervised Clustering

In this section, we first investigate the power system frequency control characteristics and the

specific behavior patterns observed, which is followed by the proposed data processing method and

the attack detection strategy based on semi-supervised clustering.

4.4.1 Behavior Patterns Observed in Frequency Control

As implied by their names, primary control responds to frequency disturbance faster than the

secondary control. When a generation-load imbalance occurs, primary control will first attempt to



www.manaraa.com

73

Figure 4.3 Balancing and frequency control

restore system frequency to 60 Hz but with a small deviation. Then, as a part of secondary control,

AGC reduces this deviation in several cycles to bring the frequency to 60 Hz. Figure 4.3 shows how

frequency control works after load changes occur in Area 1 of the IEEE 39 bus model (as shown

in Figure 4.10), where G1 is participates in AGC while G8 only has the governor function. All

generators that have a governor module enabled will help to stabilize the system frequency, and

only generators with secondary control enabled will contribute in AGC. From Figure 4.3, we might

have already observed the underlying nature of frequency control, such as a non-trivial AGC should

follow both the disturbance and the governor’s action.

In terms of the measurements’ characteristics, the frequency control of a BA could have four

general patterns as shown in Figure 4.4. The horizontal axis is the absolute value of the ACE

received by a generator and the vertical axis represents the system disturbance level within the

sliding window right before the arrival of this ACE. System disturbance can be quantitatively

measured by the variance of system frequency and generator outputs, and it reflects whether the

current operation state has drifted away from the normal state. Most of the cases, system operation

state will fall into region I, where the system is operating in the normal stable state and only a
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trivial generation adjustment is necessary. Region II, in contrast, contains scenarios where the

system does not experience much disturbance, but a large ACE value is received trying to change

generation setting points. One ACE observed in this region is either miscalculated or maliciously

injected by an adversary. Region III and IV each contains several possible scenarios covering both

no attacks and attacks and cannot be distinguished from each other by simply checking the raw

data. We use the terms ”Inside” and ”Outside” to indicate whether an event (a load change)

happens inside or outside of the BA in consideration. The problem that anomaly detection needs

to resolve is to distinguish between the scenarios under attack and normal scenarios.

In general, frequency control patterns differ for every balancing area based on their interconnec-

tions with other systems, and will be specific for different disturbances too. Several special cases

are given as follows.

• Case 1: Independent BA without power exchange with other interconnections, such as ER-

COT [73].

• Case 2: Interconnected BA where a single event needs to be adjusted.

• Case 3: Interconnected BA and multiple events occur sequentially.

Based on the above discussion, it is obvious that the implementation of the anomaly detection

varies according to which type of BA is being considered and also what specific types of attacks

it should detect. To avoid over-complicating the problem, the detection methodology proposed

provides a general way to detect adversary activities by utilizing generator behavioral conformity

metrics and clustering techniques.

4.4.2 Generator Behavior and Conformity Metrics

Generators that are synchronized in the same BA normally respond to the same disturbance

such as load change and generation rejection in a similar way, either all ramp up or all ramp down.

Figure 4.5 shows this intuitively by providing a zoomed-in view of the load increase event that

happens around 518s provided in Figure 4.3. It shows the frequency control process within the
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Figure 4.4 Grouping data based on ACE variance

sliding window which contains 1800 simulation steps (step size is 0.003 s) right before the arrival

of first post-event ACE. Figure 4.5 (a) and (c) are plotted with the original sample values. Since

we do not care much about the excursions in the signal when we check the behavior conformity of

generators, we can smooth them out by applying mature filtering techniques. Figure 4.5 (b) and

(d) show the same curves after filtering with 3 order Savitzky-Golay filter [80]. We can see that the

outputs of two generators and system frequency are highly correlated. This behavior correlation

or conformity will be utilized to detect malicious generation controls, and the main idea is to

find anomaly where the conformity of generators is lost. To quantitatively measure ”conformity”,

3 metrics are defined. The main rationale behind the 3 metrics is that synchronized generators

should adjust their output towards the same direction when facing random load changes. This is

true for both primary and secondary generation control phases.

Metric 1: Correlation between two active power outputs of generator i and j, denoted as Cij

or that between the power output of a generator i and system frequency, denoted as Cif . We

denote the discrete active power output of n generators (Gen) during a window with a pre-selected

length as matrix Pn×winSize, and thus Pim is the output of generator i at time point m. Sample

mean of generation and system frequency are given by (4.2) and (4.3), and the correlation metric

for two generator outputs is denoted as Cij and the correlation metric for a generator output and
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Figure 4.5 Generation control just before AGC operation
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the system frequency Cif is denoted as (4.4) and (4.5) respectively. Although the generator power

output and system frequency will always contain excursions, there might be constant readings when

sensors are malfunctioning or under cyber attack. Cij and Cif will be computed as 1.

For the scenario in Figure 4.5, C18 is 0.6464 and 0.8642 respectively before and after being

filtered, and C1f is -0.4721 and -0.8760. It should be noted that the reverse correlation between a

generator output and system frequency will not always hold for Case 3 mentioned in Section 4.4.1.

Pi =

∑winSize
m=1 Pim
winSize

(4.2)

f =

∑winSize
m=1 fm
winSize

(4.3)

Cij =


1, const Pi, Pj∑winSize

m=1 (Pim−Pi)(Pjm−Pj)√∑winSize
m=1 (Pim−Pi)2

√∑winSize
m=1 (Pjm−Pj)2

, otherwise

(4.4)

Cif =


1, const Pi, f∑winSize

m=1 (Pim−Pi)(fm−f)√∑winSize
m=1 (Pim−Pi)2

√∑winSize
m=1 (fm−f)2

, otherwise

(4.5)

Metric 2: Stability contribution ratio Dij of generator i and j. After a generation-load imbal-

ance occurs, all generators with the governor function will adjust their output a little to compensate

for the discrepancy between generation and load until the frequency becomes stable. Droop value

of a governor (β) will determine how much a unit will contribute with given frequency deviation as

in (4.1). Equation (4.6) defines the ratio of stability contributions of Geni and Genj with the droop

values βi and βj respectively over the length of a sliding window. Dij ideally should be constant,

close to 1, under normal operation. This metric is useful when an attacker changes one generation

set point after intrusion in a fast and extreme way.

Dij =
(Gi[winSize]−Gi[1])βj
(Gj [winSize]−Gj [1])βi

(4.6)
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Metric3: Group conformity Ri of a secondary control generator i. This metric measures

the relevance of ACE values received by a few secondary generators in a BA. Normally in each

AGC operation cycle, the total ACE value calculated for a BA equals the current lack or surplus

of generation compared to the scheduled value and would be split among all secondary control

generators based on their available capacities. Therefore, ACEs sent out in the same AGC cycle

should be approximately proportional to each other. Metric (4.7) is defined for Geni based on this

feature. Genk are neighbors of Geni, and ACE values will first be converted to real value from

p.u. value by multiplying with the base power Pbase. We use a very small constant ε to avoid

Not-A-Number (NaN) being obtained in certain cases.

Ri = exp(
∑
k

PbaseACEi + ε

PbaseACEk + ε
) (4.7)

When under malicious generation control, the behavior conformity of a generator will start to

show discrepancy, which can be identified by the values of metrics 1-3 defined above.

4.4.3 Semi-supervised Clustering Aided Multi-Class Classification

The detection of malicious generation control is formulated as a semi-supervised multi-class

classification problem. Since raw data is collected continually with a temporal sliding window in

a real-world scenario, the cost of labeling all instances will be expensive. On the other hand, the

conformity of generators’ different behaviors is expected to be well separated in the hyperspace.

Therefore, instead of trying other complex algorithms, K-means clustering is selected first to cluster

the historical data as the detection model for the online classification. A portion of all the historical

data instances will be labeled and they will provide the initial cluster centroid locations. Due to

the rareness of attack instances, in real applications, real attacks recorded should all get labeled

and synthetic data from simulation can be generated for a given system to improve the accuracy

of model.

The data are collected with sample windows determined by the arrival of ACEs as shown in

Figure 4.6, every pulse in the figure represents one AGC operation signal. The maximum length of

a window is the full AGC operation cycle. Data are collected from both local generation unit and
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other neighbor units, and Savitzky-Golay filter is then applied to these data such that the trend of

signals is maintained while the excursions get smoothed out. After the raw data gets preprocessed,

it is used to calculate the conformity metrics as discussed earlier. The metric tuple obtained from

each window will become one instance in the data mining.

Figure 4.6 Data collection by sample windows

4.4.4 Overall Detection Process

The overall process of the proposed anomaly detection is as depicted in Figure 4.7, in which the

solid line links two procedures and the dotted line represents a path of data flow. The main steps

of online detection on the left are listed below.

• Step 1: When the generator receives a new ACE from AGC controller, retrieve data from

the previous sliding window for comparison.

• Step 2: Check the variance of the data and if a sample instance falls in region I or II as

shown in Figure 4.4, do not send data forward to detection module.

• Step 3: Filter out data excursions.
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Figure 4.7 Overall flowchart of anomaly detection
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• Step 4: Perform a dimension reduction on the data and calculate the three conformity

metrics based on the processed data.

• Step 5: Send conformity metrics to the online model that was built from offline clustering

and determine if this instance represents a normal AGC operation.

The offline clustering proceeds as following.

• Step 1: Online data gets archived and if it is a novel pattern, it will get relabeled.

• Step 2: New offline cluster model M ′ is obtained through offline training with updated

instance set.

• Step 3: Online model is updated on request.

4.5 Generation Attack Detection based on Density Sensitive Clustering

In last section, an anomaly detection methodology based on the behavior conformity of a group

of generation units is proposed. But through the experimental evaluation [81], a drawback of K-

means clustering is observed. That is, K-means clustering does not consider the density information

embedded in the data set. Therefore, a density sensitive clustering technologies is applied to solve

the same problem [82] as an improvement.

Density based Spatial Clustering of Application with Noise (DBSCAN) [83] was proposed in

1996, which demonstrated excellent capability of extracting the density information out of datasets.

Later, Hierarchical DBSCAN (HDBSACAN) [84] was further developed in order to handle the

parameter selection issue of DBSCAN. Density based clustering is widely applied in unsupervised

learning, and researchers have already tried to use it to process the great amount of PMU data in

power system [85].

Clustering is originally proposed as an unsupervised learning technique. It does not require the

data instances to be labeled. But in many cases, people would like to provide the clustering process

with hints. It is reasonable to apply empirical knowledge to bias the clustering intentionally. Thus,
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we assume again that certain amount of labeled data instances via post events analysis are available

and semi-supervised clustering is adopted in the application of HDBSCAN.

4.5.1 Preliminary of Hierarchical DBSCAN

The objective of density based spatial clustering is to group all instances in a data set X =

{x1, ...,xN} distributed in the hyperspace into clusters based on the regional density. Distance

d(xi,xj) is defined for any two points xi and xj . Every data point either becomes a core point

belonging to a cluster or it becomes a noise point (outlier) after clustering. We adopt the following

definitions from [84] which are originally designed in DBSCAN:

Core points - A point xi is a core point w.r.t. ε and mpts if |Nε(xi)| ≥ mpts, where Nε(xi) =

{x ∈ X|d(x,xi) ≤ ε} and |.| denotes cardinality. If a point is not a core point, it is labeled as noise.

ε reachable - Two core points xi and xj are ε reachable w.r.t. ε and mpts if xi ∈ Nε(xj) and

if xj ∈ Nε(xi).

Density connected - Two core points xi and xj are density connected w.r.t. ε and mpts if

they are directly or transitively ε reachable.

Cluster - A cluster C w.r.t. ε and mpts is a non-empty maximal subset of X such that every

pair of objects in C is density-connected.

In [84], core distance and reachability distance are introduced, which are presented as following.

Core distance - The core distance of an object xp in X w.r.t. mpts, dcore(xp), is the distance

from xp to its mpts-nearest neighbor (including xp).

Mutual reachability distance - The mutual reachability distance between two objects xp

and xq in X w.r.t. mpts is defined as dmreach(xp,xq) = max{dcore(xp), dcore(xq), d(xp,xq)}.

HDBSCAN is developed based on DBSCAN and it works better for a data set composed of

clusters of different densities and only requires one user input parameter mpts. The way how it

works is that it first forms a Minimum Spanning Tree (MST) connecting all data points in the

hyperspace. Thus all data points belong to the same cluster at the beginning. An edge between 2

vertex in the MST uses the mutual reachability distance [84] as its weight. Instead of utilizing a
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specific ε value as input, HDBSCAN treats ε as a variable. Starting from the complete dataset as a

root node, it continuously decreases ε value and along the way removes those edges whose weights

are greater than ε from MST. Finally a hierarchical cluster tree (a divisive dendrogram) will be

formed until all the data points are labeled as outliers. Cut the cluster tree at any ε level, points

that are still connected belong to the same cluster. It is not necessary to cut the tree with a global

ε value, and therefore, HDBSCAN is able to recognize clusters of different densities. During the

construction of the MST, the mutual reachability distance between two data points incorporates

the data density information by specifying the minimum number of data points that a core point

should possess in its vicinity and therefore, the clustering achieved is sensitive to the density of

data points.

4.5.2 Application of HDBSCAN in Divide & Conquer Algorithm

HDBSCAN is by no means perfect. First of all, since the edge weights of the MST is determined

by mpts, for certain cases, the global mpts cannot form a MST with satisfactory structure; second,

HDBSCAN is not able to distinguish two clusters that are close to each other and have different

densities. Figure 4.8 shows one example. From Figure 4.8 (a) we can intuitively see that two clusters

exist in the hyperspace, of which cluster 1 is much denser than cluster 2, and the two clusters are

closely placed. If we run HDBSCAN on the dataset, Figure 4.8 (b) depicts the dendrogram resulted.

It is clear that the splits at the beginning from the root node are not ”true splits” which are supposed

to divide a cluster into another two. In fact, those splits throw out a data point of cluster 2 at a

time as an outlier. During the whole process, HDBSCAN believes there is only one cluster exist.

The key reason is that the two clusters stay too close.

Reference [84] has discussed using HDBSCAN for semi-supervised clustering. It suggests utilize

labeled data instances as constraints at the instance level to find the optimal clusters. That is,

list all the pairs of points should stay in the same cluster and all the pairs should not, then select

clusters with least constraints violation. Considering the number of labeled data can be large too,

our algorithm uses entropy, which is strictly defined in information theory, to select the optimal
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Figure 4.8 Special case when HDBSCAN is not suitable

clusters in terms that the labeled data points with different labels can be separated as much as

possible. Entropy of a cluster is calculated as (4.8), in which p(Ci) represents the proportion of

class Ci in the labeled sub dataset and q(Ci) = 1− p(Ci).

Entropy = −
N∑
i=1

[p(Ci)logp(Ci) + q(Ci)logq(Ci)] (4.8)

Based on the analysis above, a modified algorithm based on HDBSCAN is suggested as stated in

Algorithm 3, which adopts the divide and conquer philosophy. XN×p in the pseudo code represents

the dataset with N data points and each point has p features, CN×1 is a vector stores the cluster

label for all points, {mpts} is a set that contains all candidate mpts used in HDBSCAN and Tdepth



www.manaraa.com

85

indicates how deep the algorithm can move to and cut on the dendrogram. This algorithm is able

to recursively find the clusters.

Data: XN×p, CN×1, {mpts} and Tdepth

Result: CN×1

1 Pick up one element m from {mpts};

2 Run HDBSCAN(X,m) and attain cluster dendrogram cl;

3 if Bad cluster tree pattern observed in cl then

4 Divide X into X1 and X2;

5 call Div Conq HDBSCAN() on X1;

6 call Div Conq HDBSCAN() on X2;

7 else

8 Find all true splits and cut at depth above Tdepth;

9 Select the cut with min sum of cluster entropy;

10 go to step 1 until {mpts} becomes empty;

11 end

12 Modify CN×1 according to the optimal cl return CN×1

Algorithm 3: Divide and Conquer HDBSCAN

4.6 Peer-Assisted Mitigation of ACE Attacks

A few control center level anomaly detection methodologies have been proposed in the existing

literature and they provide solutions to detect false data injection attacks targeting AGC measure-

ments. However, the attacks directly target the ACE values along the forward control path of AGC

can not be detected by the anomaly detection algorithm located in the control center. Besides,

not any preventive or corrective schemes are proposed to handle the cyber attacks to the best

knowledge. Considering such shortcomings, a mitigation solution is proposed in this section which

is designed in such a way that it is able to not only detect anomalous ACE commands from the

control center, but also mitigate the impacts of attacks by replacing the missing/bad ACE with an
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estimated value, and hence the AGC control continues without being interrupted. In the context of

Figure 4.1, the attacks under investigation is 3 and the mitigation is placed at the station level.

4.6.1 Overall Mitigation Process

The idea behind the proposed mitigation is that the generating units in one balancing authority

are supposed to move together towards the same “direction” every time under the control of AGC

and the contribution of every unit in the AGC operation are highly relevant since the AGC is

deployed with the economic performance under consideration. Therefore, when the ACE value

sent to a generating unit from the control center gets compromised or blocked, if this unit has

the capability to retrieve data from its peers, very likely it can still attain the current situational

awareness and carry out the generation control actions in need.

Figure 4.9 provides the schematic of the proposed mitigation. The fundamental assumption

underlying is that the generating units that participate AGC are able to regularly exchange the

ACE information among themselves. One generating unit is supposed to be able to communicate

to at least a few peers.

The mitigation relies on the information exchanged among peer generating units. Peer gen-

erating units that stay close geographically can be interconnected to aid the ACE info exchange.

Every unit will randomly select some of its interconnected peers and request these peers’ ACEs in

every AGC cycle besides its own from the control center (Step 0). This random selection of peers

is achieved based on a “reputation” metric of every peer, which serves as a moving target and

makes it harder for the adversary to scan through or compromise the entire community. The peer

reputation keeps updating based on the performance of each individual peer in the clustering and

the algorithm will be provided latter. It’s worth noting that peer ACEs will be shared via either

the network 1 or 2 as shown in Figure 4.1. Anomaly detection tactics such as what’s proposed

in the previous subsections can be applied first on the ACE values. In case that no anomaly of the

ACE received is detected, all the ACE values can be stored in the database, which will be utilized

to obtain the relationship between the ACEs from two peers and this is done via linear regression
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(Step1). When anomaly does exist, the generating units will resort to the main mitigation strategy.

Step 2 to 6 are the major actions involved in the mitigation. The fundamental idea of step 2 is to

use the linear regression models obtained in step 1 to calculate inferred values for the suspicious

ACE. Then a one dimensional density based clustering of all the inferred ACEs is conducted in

step 3. With the majority cluster, ACE estimation will be performed (step 4) and the reputation

of peers is updated (step 5). Usually the majority cluster of inferred ACEs will be treated as intact

values considering that the attacker is not able to compromise most of the peers. After the ACE

estimation, the estimated ACE value will replace the suspicious value received from the control

center. Besides, each generating unit has the capability to report its low reputation peers to con-

trol center so that the most commonly reported units can be temporarily excluded from the AGC

(step 6). Subsections following will elaborate the main mitigation steps.

4.6.2 Random Peer Data Query as Moving Target Defense

The telemetry network configuration in SCADA and WAMS is often static. The statically

configured communication set-up is vulnerable when facing malicious reconnaissance, especially

when not many redundant end nodes are included in the design. This makes it easy for the adversary

to find out what is the data sources and sinks for a certain critical application such as WAMPAC.

For instance, the control center gets the system frequency from a transducer remotely and this

transducer is the only available data source. The adversary could try to block the communication

channel between the transducer and the control center to disable the function or he can manipulate

the transducer readings to confuse functions at control center. The attacker can achieve his goal

without much efforts since his targets are well scoped. One natural way to counteract this would

be to increase the data redundancy and also add randomness to the implementation of function.

Adding to data redundancy is similar to the adoption of back-up workstations against natural

failures. If the control center reads the same system frequency from 10 transducers, it becomes

much harder for the attacker to cause the same impacts as in the previous example. He might

be able to compromise one or two readings, but it is useless as a trial either to block the reading
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Figure 4.9 Overall AGC attack mitigation
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from control center or, with a majority vote scheme in place, to manipulate some of the readings.

Though lifting the level of data redundancy enhances the function reliability, it will also highly

increase the communication overhead for the attack free operation state. If every measurement

requires data from all accessible sources, the amount of data needs to be exchanged will explode,

the complexity of data processing will soar and the efficiency of function will decrease.

Thus, a random data query mechanism is proposed in this section based on the philosophy

of moving target defense. In this way, the data and information exchange among agents will not

increase very much and in the meanwhile it confuses the attackers by rendering the communication

among end nodes “moving”. The foundation of this mechanism is that out of all the redundant

and accessible data sources, data query is only sent out to a small part of the sources randomly. In

this way, the efficiency and efficacy of the function can be guaranteed, and the cyber security will

be increased as well. The random selection of data sources is implemented by a reputation based

scheme. That is, every generating unit maintains a reputation vector R that records the reputation

of every peer that this unit can communicate with. Each element in R represents the probability

that one corresponding peer gets selected during data query and the the elements in R always sum

up to 1.
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Data: Reputation vector Rm×1, clustering label vector Cp×1, indicator vector Indcl×1

Result: Updated reputation vector R

1 S1 = 0 S2 = 0;

2 for i← 1 to m do

3 if peer i is not selected during ACE request then

4 Keep R[i] as is;

5 else

6 S1 = S1 +R[i];

7 R[i] = R[i] ∗ exp(Ind(C[i]) cnt(C[i])
p );

8 S2 = S2 +R[i];

9 end

10 end

11 foreach i in selected peer do

12 R[i] = R[i] ∗ S1
S2

13 end

Algorithm 4: Peer reputation update

Element values of R should be updated cyclically according to the performance of each peer

during clustering. Algorithm 4 is proposed to achieve this goal. Line 7 in this algorithm shows that

the reputation of a peer is updated according to the size of the cluster to which the ACE value

inferred from this peer’s information belongs to. p is the number of all the selected peers. The

Ind(C[i]) is an indicator function takes values either 1 or -1 and the vector Ind takes the length as

the number of clusters cl. When it takes value 1, the underlying principle of the reputation update

is that the reputation of the majority should be boosted and that of outliers should be decreased.

But it is also well-known that majority is not necessarily correct. If any peer out of a cluster, which

could be the majority, has a concrete sign of being compromised, the Ind(C[i]) is turned from 1
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to -1 to lower the reputation of all peers belong to cluster C[i]. If the data from a generating unit

is manipulated by the adversary, after a few cycles of AGC, it will have very low reputation from

others’ perspective and in such a way it is very unlikely to be selected in the data query any more.

4.6.3 ACE Computation and Estimation based on Peer Data

Every Economic Dispatch (ED) cycle (roughly 5 mins), the load reference set point of every

generator is calculated in the control center to minimize the production cost and is assigned to

corresponding machine. A simple ED model is given by (4.9), assuming N generators are involved in

the dispatch. Pi and Fi(Pi) are the active power output and cost function of generator i respectively.

C in (4.9) is the total load of the system. The necessary condition that a set of active power output

P1, ..., Pi, ..., PN to be the most economic dispatch is that the incremental cost of each machine

equals the Lagrangian multiplier of the balance constraint as shown in (4.10). This specifies the

base generation points within the economic dispatch cycle.

With a dispatch cycle, AGC operates every 4 seconds. Generating units in the same balancing

authority will share the overall area control error based on their participation factor (PF) when

generation-demand imbalances are observed. The process is coordinated by the AGC function

running at the control center. (4.10) should still be satisfied after every AGC control and therefore,

the area control error will be split among the generators proportionally according to (4.11) [86].

min.
Pi

N∑
i=1

Fi(Pi)

s.t

N∑
i=1

Pi = C

(4.9)

Fi(Pi)
′

= λ, i = 1, 2, ..., N (4.10)

∆Pi
∆Ptotal

=

1

F
′′
i (Pi)∑N

i
1

F
′′
i (Pi)

(4.11)



www.manaraa.com

92

The above analysis indicates that the ACE control sent to different generators should be lin-

early correlated and this can be leveraged during mitigation when AGC control signals sent to a

generating unit is compromised. In the mitigation strategy proposed, linear regression is adopted

to find the relation model between the ACE values of any two generating units and the model

obtained is able to infer one unit’s ACE value according to the ACE of the other unit. Denote the

ACE value that generating unit i receives during AGC cycle k as ai[k], and the ACE value that its

peer j receives as aj [k]. Then given two ACE value sequences, there are two ways to perform the

linear regression. Either to take ai as independent variable and aj as dependent variable or vice

versa. With the first option, unit i can have a sequence of linear models that can be denoted as

ai = βjaj + εj j ∈ {Peer(i)} (4.12)

εj in (4.12) represents the ACE data transmission error following Gaussian distribution. (4.12)

can also be rewritten in matrix form as following



ai

ai

.

.

.

ai


=



β1

β2

.

.

.

βp


.



a1

a2

.

.

.

ap


+



ε1

ε2

.

.

.

εp


(4.13)

In (4.13), it’s assumed that the generating unit i has selected p peers in the mitigation. Similarly,

if the second way to run the linear regression is selected, the models that unit i obtain after the LR

are as given in (4.14) or (4.15). By utilizing the least square estimation, ai can be estimated based

on a set of aj . The estimated ACE value âi derived from (4.13) is âi =
∑

j βjaj
p and that derived

from (4.15) is âi =
∑

j βjaj∑
j β

2
j

aj = βjai + εj j ∈ {Peer(i)} (4.14)
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

a1

a2

.

.

.

ap


=



β1

β2

.

.

.

βp


.ai +



ε1

ε2

.

.

.

εp


(4.15)

4.6.4 1-d DBSCAN based Corrupted ACE Replacement

Upon the receiving of the new ACEs from selected peers, the linear regression models obtained

can be used to compute a group of inferred ACE values. Out of those peer ACE values, some might

be compromised during transmission too. The 1-d clustering is deployed to exclude such values and

the rationale behind is that most of the peers should stay intact. Therefore, the ACE estimation

will be carried out based on the majority cluster.

4.7 Evaluation Results

4.7.1 Experiment Set-up

IEEE 39-bus system is selected as the study case in this section too. For the evaluation of

the detection algorithm, the overall system is divided into 3 BAs as shown in Figure 4.10 and

each BA has its own AGC function operating once every 2000 simulation steps (around 6s). Table

4.1 provides the information about the ten generators in this system. Real-time simulations are

carried out with the ePHASORSim solver in RT-Lab in order to generate all the synthetic data for

various scenarios. The performance of proposed methodology has been tested by focusing on Area

2 in the 39-bus system. This area contains 4 generation units, among which G4 and G7 are the

primary control generators and G5 and G6 are both secondary control generators being involved

in AGC. From Table 4.1, we can notice that G5 and G6 have the identical governors and same

droop values, therefore, their behavior is expected to be highly correlated. For the evaluation of the
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mitigation strategy, the whole 39-bus system is perceived as a single BA and all the ten generators

are configured to participate in the AGC.

Table 4.1 Generation information

Gen type Gov type β Generation(p.u.)

G1 GENROU GAST -0.086 0.25

G2 GENROU none none 0.5729

G3 GENSAL HYGOV -0.0395 0.65

G4 GENSAL HYGOV -0.0395 0.632

G5 GENROU GAST -0.046 0.508

G6 GENROU GAST -0.046 0.65

G7 GENSAL HYGOV -0.0395 0.56

G8 GENROU GAST 0.046 0.54

G9 GENROU none none 0.83

G10 GENROU none none 1.012

4.7.2 Anomaly Detection Evaluation

To include common daily load variations in the synthetic data for detection evaluation, a typical

day’s ACE records from MISO [72] which contains BA ACEs updated every 30 seconds are incor-

porated in the simulation. Besides, the window size is selected as 1600 simulation steps (around

4.8 seconds) to determine data instances. More detailed generator characterization is necessary to

determine the window size and will be further investigated in the future.

Six scenarios have been considered to collect the synthetic data: (1) normal inside load changes

(nor in), (2) normal outside load changes (nor out), (3) ACE flip attack together with inside events

(flip), (4) ACE constant attack together with inside events (const), (5) ramp attack targeting a

compromised generator (ramp), (6) switching attack targeting a compromised generator (switch-

ing). Data collection includes 3 stages. First, one simulation is executed for each scenario separately

to collect labeled training instances; second, another single simulation run containing mixed types

of scenarios is carried out to collect more unlabeled training data; third, repeating stage one with
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Figure 4.10 IEEE 39 bus model divided into 3 BAs
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Figure 4.11 Six training scenarios
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different simulation parameters and collecting data as test instances. For all scenarios with attacks,

G5 on bus 34 will be chosen as the target, and G6 would stay uncompromised.

Figure 4.11 shows the simulation results under each scenario. Scenario (1) shows less excursion

than (2) although all the events are exactly the same in terms of load change amount and time.

It makes sense because inside events will result in both governor action and AGC operation, but

the outside events ideally should only activate the governor. (3) is a scenario where the adversary

will flip every real ACE and then forward to the generator, and for (4), a false constant ACE is

injected each time. Both scenarios (3) and (4) are data integrity attacks that target ACE values.

In these two scenarios, the internal load level has been changed but ACEs are not really fed into

the generator since what we need is merely the data before each AGC operation. (5) and (6) are

two scenarios with malicious generation manipulation via intrusion. Ramp attack keeps driving the

generation level up whereas the switching attack causes oscillation in the power system.

The number of training and test instances are summarized in Table 4.2. Data instances are

plotted in Figure 4.12 (a) - (c) with scaled conformity metrics, in which (c) shows the final clusters

obtained from K-means clustering with centroids as black cross inside a circle. Test confusion

matrix with this clustering model is provided in Table 4.4.

From the test results, we can see that the k-means based methodology performs well in detection

of data integrity attacks on ACE values (flip attack and scaling attack), the false negative and false

positive rates are both 0. However, based on the confusion matrix and Figure 4.12, it can be seen

that the 3 metrics defined are not sufficient to separate the two normal scenarios or the two attack

scenarios after intrusion for the ramp and switching attacks. For the two normal scenarios (nor

in and nor out), it does not matter much as long as most of normal instances can be separated

from the abnormal ones. The de-facto false positive rate, if we simplify the problem into a binary

classification, is as low as 1.04% (equal to 1/(73+23) based on the scenario distribution). As for the

ramp and switching attack scenarios, when malicious generation manipulation happens, no matter

how the adversary changes the generation set point of the target, other generators that are not

under attack will work against the targeted generator. This is why the C56 is negative for both
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ramp and switching attacks (close to 0 after being scaled). If the two patterns are allowed to be

merged as one, the fake diagonal highlighted with light purple of the confusion matrix shows good

detection accuracy.
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Figure 4.12 Scenario distribution and clustering results with K-means clustering
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Table 4.2 Instances summary

Training
Test

Labeled Unlabeled

nor IN 102 - 73

nor Out 91 - 23

flip attack 279 - 13

const attack 275 - 20

ramp attack 12 - 12

switching attack 14 - 16

Total 773 470 157

Table 4.3 Centroids of clusters

C56 D56 R56

nor in 0.9473 0.5379 1.0000

nor out 0.9946 0.7510 1.0000

flip attack 0.9912 0.7386 0.0000

const attack 0.9882 0.7388 0.3394

ramp attack 0.2536 0.5296 1.0000

switching attack 0.0334 0.4679 1.0000

From Figure 4.12 (a), it can be seen that the labeled switching attack data and ramp attack data

have different density features that are not well-captured by the K-means clustering, and this is the

reason why HDBSCAN based algorithm is applied. We can also notice that both normal scenarios

highly overlap with each other and there is no practical needs to distinguish them in anomaly

detection, thus they are merged as the same class during application of HDBSCAN. Figure 4.13

illustrates the process of the first recursion of the clustering. {mpts} is selected as {10, 11, 12} and

the cut depth as 4. With the dendrogram obtained with mpts = 10, four different cuts are carried

out with corresponding ε values. Those cuts are approximately marked on Figure 4.13. The cluster

entropies resulted from each cut are also annotated on the left of Figure 4.13. Entropy tuples are

corresponding to each cut from top to bottom and the entropy values in a tuple corresponds to
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Table 4.4 Test confusion matrix with K-means clustering

Prediction (%)

nor in nor out flip const ramp switching

nor in 31.51 67.12 0 1.37 0 0

nor out 0 100 0 0 0 0

flip 0 0 100 0 0 0

const 0 0 0 100 0 0

ramp 0 0 0 0 0 100

switching 0 0 0 0 6.25 93.75

clusters from left to right. We need to pay attention that the right cluster of the second cut has the

entropy as 0.82, but after a further split, the left child cluster has a much larger entropy as 1.35.

That’s due to the fact that the instance number of its left child cluster is much smaller than that

of the right child cluster. In the end of this layer of recursion, it selects the 4th cut with mpts = 10

and cut value ε = 0.31. Since the 3rd cluster from the left (which contains all ramp and switching

attack instances) still has large entropy, it will go to the second layer of recursion.

With the proposed clustering methodology, switching and ramp attack clusters are better sep-

arated, and this could be observed from Figure 4.14. As a bonus, HDBSCAN also points out the

potential outliers existing in the data set, which should be further investigated by experts. For the

on-line detection, KNN is applied to the test dataset and the results are summarized in Table 4.5.

Compared with Table 4.4, the overall misclassification rate is deduced except the misclassification

of switching attack to ramp attack.
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Figure 4.13 Dendrogram of HDBSCAN

Figure 4.14 Clustering results with HDBSCAN
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Table 4.5 Test confusion matrix of proposed clustering methodology

Prediction (%)

normal flip const ramp switching

normal 100 0 0 0 0

flip 0 100 0 0 0

const 0 0 100 0 0

ramp 0 0 0 100 0

switching 0 0 0 18.75 81.25

4.7.3 AGC Attacks Mitigation Evaluation

The IEEE 39 bus model is treated as one balancing authority in the evaluation of the peer-

assisted AGC attack mitigation. All the 10 generators in the system are configured to participate

in the AGC operation. The evaluation focuses on the reputation convergence of different generating

units when some of the units’ ACEs are under cyber attacks.

Figure 4.15 shows an example of the reputation update containing the first 2 rounds of mitiga-

tion, i.e. the first two AGC cycles, when unit 1 is under cyber attack. Reputation vectors before

peer selection, selected peers, and 1-d clustering for all the 10 generating units are provided. Figure

4.15 (a) shows the reputation vectors of all units at the beginning. In the first round, unit 1 is

randomly selected as the peer by unit 4, 5, 6, 7, 8 and 9. But the estimated ACE valued based

on unit 1’s info is labeled as an outlier in the following 1-d clustering, as depicted in (c). In the

second round, all the units that had selected unit 1 in the first round does not select it again (see

(e)) due the reputation of unit 1 has been decreased (see (d)). But for those who does not select

unit 0 in the first round, unit 0 still gets a good chance to be selected in the second round (see (f)).

If such procedures continue, the generating unit that is under attack will have low reputation from

the perspective of all the rest units, given that less than half of the units are attacked.

To further analyze the reputation vector evolution under various scenarios and how the proposed

strategy works as an effective mitigation, five different attack scenarios are simulated and the results

are provided from Figure 4.16 to Figure 4.20.
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1. Scenario 1: The communication path between the first generating unit and the control

center is compromised after the linear regression takes place. The attacker changes the ACE

values to unit 1 to a constant value, which is made to be zero in the simulation. From Figure

4.16 we can tell that all the generating units but unit 1 recognizes unit 1 as the low reputation

unit. When it comes to unit 1, since all the peer candidates are intact from any attacks, thus

the reputation of all the peers does not get changed. In this scenario, the impact of the attack

can be mitigated by ACE estimation being carried out at unit 1.

2. Scenario 2: The ACEs sent to unit 2 and 3 from the control center are continuously flipped

after the linear regression models are obtained. Similarly to scenario 1, the units under

attack are recognized by all the generating units and attack impacts are mitigated via ACE

estimation. See Figure 4.17.

3. Scenario 3: ACEs sent to unit 2 and 3 from the control center are manipulated to be 5 MW

continuously after the linear regression. The analysis is the same as that for scenario 2. See

Figure 4.18.

4. Scenario 4: Constant ACE attacks are launched at unit 1, 3 and 5. But this time, the attacks

take place before the generating units obtain the linear regression models, which means that

some of the LR models stored at different generating units are incorrect. However, from Figure

4.19 we can see that since less than half of the randomly selected peers are compromised, the

units under attack are still detected by the other generating units and therefore, the attack

will not influence the other units. For the units that are under attack, it’s not possible for

them to get the correct ACE values even through the ACE estimation because the linear

regression model that they have are incorrect. But they can be excluded from the AGC

temporarily after being reported by the other units.

5. Scenario 5: Scaling attacks targeting unit 1 - 5 are simulated before linear regression. This

is the most severe case and cannot be effectively handled by the proposed mitigation method.

For the units under attack, each one of them is able to distinguish the other units under



www.manaraa.com

105

attack, but the ACE estimation will not work since the model obtained are incorrect. The

attack impacts cannot be mitigated by low reputation, that is because for the units which

are not attacked, when they trying to find the majority from the randomly selected peers,

the majority will be the attacked units. Thus, the attacked estimation value will outrun the

true ACE value. The reputation evolution is depicted in Figure 4.20. Even they are able to

report the low reputation units to the control center, the nomination itself will be incorrect.

The only way that this scenario can be mitigated is that the additional indicator function in

Algorithm.4 is set to -1.

Figure 4.21 shows the output of the first three generators in the 39-bus model under scenario 1

above, with and without proposed mitigation strategy in place. The ACE values sent to generator

30 (unit 1) is manipulated to 0 when under attack, therefore, the generation output of generator

30 when it is under attack only contains the fluctuation due to its governor function (see (b)). On

the other hand, when the proposed mitigation is present, although the ACE from control center

to generator 30 is still 0, it can estimate the correct ACE value based on the peer information.

Therefore, gen 30 still actively participates in the AGC (see (a)). It is worth to note that since all

the ten units are involved in the AGC, it is not very likely that cyber attacks might induce system

stability issues even the mitigation is not adopted, but the economic performance of the generation

control will surely get impaired without mitigation.

4.8 Summary

Data-driven anomaly detection of generation control is smart grids is investigated in this chapter.

Two different clustering techniques are adopted - K-means and HDBSCAN. HDBSCAN considers

the density information of the data set, and thus it results in more satisfactory clustering results.

A peer-assisted ACE estimation strategy is proposed to mitigate the data availability and in-

tegrity attacks targeting ACE values.

The countermeasure proposed in this chapter is implemented at the station level and it serves

as the last line of defense to counteract the attacks targeting the generation control. The anomaly
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Figure 4.15 Reputation update based on 1-d clustering
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Figure 4.21 Generation output with and without mitigation under scenario 1
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detection method proposed is able to detect the attacks targeting both the measurements and ACEs

as long as not all the data are compromised. For the peer-assisted mitigation, it is only effective in

mitigating ACE attacks. Besides, the performance of the mitigation will be improved if the com-

munication infrastructure interconnecting generator agents possesses certain level of redundancy

and heterogeneousness.
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CHAPTER 5. CONCLUSION

This dissertation focuses on the cyber attack detection and mitigation for wide area protec-

tion and control functions in smart grids in order to improve the situational awareness and self-

adaptiveness of these critical functions and hence enhance the overall power system resilience.

5.1 Problems Resolved and Proposed Solution

Wide-area protection and control schemes in power systems are often centralized functions which

are prone to single point failure resulted from malicious cyber attacks. To enhance the robustness

of these critical cyber layer functions on which the physical layer’s secure and reliable operation

highly relies is of the most importance. Except for traditional IT security techniques, empirical best

practices, and the solutions that can only be applied in the control center, cyber attack detection

and mitigation based on a peer-to-peer and decentralized functional structure provides another

promising research direction.

First part of the dissertation aims to make the SIPS resilient to data availability attacks.

Decentralization based on MAS is adopted as an alternative to the centralized SIPS architecture.

Anomaly detection and adaptive load shedding are realized with machine learning and optimization

techniques respectively.

• For anomaly detection, a data-driven algorithm with high interpretbility, SVMLDT, is pre-

sented.

• For adaptive load shedding, an optimal load shedding scheme leveraging the historic knowl-

edge is designed for the agents when the communication is compromised.

A realistic load rejection SIPS is mapped to IEEE 39 bus system as case study to validate the

anomaly detection algorithm. Two synthetic data sets considering different events are generated
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with real time simulation. Detection results are collected with 5 different machine learning algo-

rithms. Adaptive load shedding scheme is tested for scenarios when the system is under different

attacks. Dynamic load profile (including load variation and local marginal price) is generated ac-

cording to the statistics from MISO. Agent prototype has been programmed in Java and the data

propagation protocol is verified.

Second part of the dissertation presents a data-driven anomaly detection algorithm for power

system generation control and a mitigation of ACE attacks based on peer-assisted ACE estimation.

As a dimensionality reduction method for temporal-spatial data set, three conformity metrics

are defined based on the generation control signals from adjacent peers. Semi-supervised K-means

clustering is utilized for the anomaly detection. Considering the density information is ignored

by K-means clustering, an improved version of HDBSCAN is developed and it results in better

clustering performance. The mitigation proposed aims at mitigating the attacks targeting the

ACE being sent from control center to generator units. A generating unit randomly chooses which

accessible peers to request data from, and this reduces the overhead of mitigation and serves as

a moving target defense against the cyber attacks. Peer selection is achieved according to the

reputation of peers, which keeps being updated. With the information from peers, a generating

unit can estimate its ACE value and use it to replace the abnormal values received from control

center. Besides, a low reputation report strategy is proposed such that generating units can inform

the control center about the peers with low reputation, which will be temporarily excluded from

the AGC.

For detection evaluation, IEEE 39 bus system which is divided into 3 areas with AGC imple-

mented individually. Synthetic data set is generated considering normal load change and common

generation attacks such as constant ACE attack, generatin ramp attack. It’s shown that the K-

means clustering can successfully distinguish between the normal states and abnormal states, but

its performance is not very satisfactory in telling apart two attack scenarios. In contrast, density

sensitive method provides better performance. For mitigation, all the 10 generating units in IEEE
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39 bus model are configured in AGC and experiments suggest that the solution proposed achieves

the goal to rid the impacts of ACE attack when less than half of the agents are compromised.

5.2 Future Work

1. MAS organization and protocol: The communication protocol of MAS needs to be further

explored in order to improve the communication efficiency and the timing performance for

on-line anomaly detection.

2. Data-driven algorithms: Each detection and mitigation strategy proposed in this work can

be replaced by alternatives in a plug-and-play manner, so more efficient algorithms should be

developed and tested for comparison.

3. Feature extraction techniques: It is necessary to investigate and utilize more general

feature reduction techniques to avoid the high requirements of domain knowledge in feature

extraction.

4. Data integrity attack targeting adaptive control: Chapter III only considers DoS

attack while investigating the optimal adaptive load shedding scheme. One future work is to

improve the solution and to ensure that the adaptive control can stay effective under other

attacks such as data integrity attack.

5. Comprehensive mitigation solution: The mitigation strategy proposed in chapter IV is

not able to handle false injection attacks targeting the measurements of AGC. This can be

resolved by adopting available model-based methods or developing a countermeasure that

also counteracts such attacks based on the peer-to-peer data exchange.

6. Solution application in other WAMPAC functions: The detection and mitigation

solution proposed in this dissertation can be potentially applied to other functions such as

wide area damping control and wide area voltage control, i.e., the same MAS could and should

be used to implement various WAMPAC functions.
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